Towards Guaranteed Accuracy for Flow Spread
Measurement with (e, 5)-nonduplicate Sampling

Haibo Wang! Chaoyi Ma?

Dimitrios Melissourgos

3

Guoju Gao* Shigang Chen®

! Department of Computer Science, University of Kentucky, Lexington, KY USA
2Google Sunnyvale, CA USA
3School of Computing, Grand Valley State University, Allendale, MI, USA
4School of Computer Science and Technology, Soochow University, Suzhou China
SDepartment of Computer & Information Science & Engineering, University of Florida, FL USA

Abstract—Per-flow spread measurement in high-speed networks
is important to many practical applications. To fit in the limited
on-chip memory, sketch-based solutions allow multiple flows to
share space, causing inter-flow noise and thus sacrificing in
accuracy. Recent progress on non-duplicate sampling creates a
new direction of sampling-based solutions for spread estimation,
which performs better than memory-sharing sketches. However,
the current sampling-based solutions either use a system-wide
sampling probability or lack the flexibility of setting the sampling
probability dynamically and at per-flow level. This paper advances
the theory and design of non-duplicate sampling by introducing
a new (¢, 8)-RE accuracy model for spread estimation and a new
(¢, B)-nonduplicate sampling type, establishing their equivalency,
proposing the idea of individualized per-flow sampling, and de-
signing a novel algorithm based on this idea to implement (¢, 3)-
nonduplicate sampling and thus achieving (¢, 3)-RE accuracy.
Trace-driven experiments demonstrate that our new solution
outperforms the best state of the art significantly in terms of
maximum supported packet stream size under a given accuracy
requirement or in terms of accuracy with the same packet stream
size, and outperforms sketch-based solutions to spread estimation
significantly in accuracy.

I. INTRODUCTION

Per-flow spread measurement over packet streams in a net-
work is a fundamental task for a wide range of applications
such as traffic engineering, anomaly detection, access profiling,
content caching and so on [, [2], [3], [4], [Sl, (6], [7]. Flow
spread is defined as the number of distinct elements in a
flow, where the definition of flow and element can be flexibly
configured to serve applications with different measurement
requirements. For instance, to detect DDoS attacks [3], [S], [7],
we may define a per-destination flow as all packets sent to
the same detection address and measure its spread by counting
the number of distinct sources (elements) that contact this
destination. As another example, we may treat the destination
addresses as elements and measure a per-source flow’s spread,
which helps to find out the super spreaders [8], [9].

Performing per-flow spread measurement at high-speed net-
work devices is challenging due to the space and processing
speed constraints on data-plane network processors. On the one
hand, it takes bitmap [10], FM sketch [11l], or HyperLoglog
sketch [[12], [[13] hundreds or thousands of bits to measure the
spread of a single flow. The reason is that counting distinct
elements that appear in a flow requires us to remember the
elements for duplicate filtering. On the other hand, a modern
high-speed router may face millions of concurrent flows. Hence,
maintaining a separate data structure per flow requires an

unaffordable amount of on-chip memory (e.g., SRAM) from
network processors, which must commit such resource to other
key network functions such as routing, packet scheduling, traffic
shaping and cybersecurity.

Prior art and limitations. There are broadly two categories
of solutions to the constraint of memory allocation: memory-
sharing sketchesﬂ and sampling. Memory-sharing sketches [[14]],
[LS], [L6], [17], (18], [19] let all flows share memory space. This
allows them to fit in a pre-allocated, limited space, achieving
memory efficiency at the cost of accuracy in their spread
estimation. Thanks to space sharing, the spread information of
a flow recorded in a sketch becomes noise to other flows. A
major challenge is how to remove inter-flow noise to improve
the quality of spread estimation.

Other solutions are based on non-duplicate sampling [20],
(211, [22], [23l], [24], [25]. Unlike traditional sampling methods
that sample each packet independently with a certain probabil-
ity, non-duplicate sampling methods only sample each packet
at its first appearance with a certain probability, and ignore the
subsequent appearances of the same packet, called duplicates.
In the context of this paper, we abstract each packet as a value
pair consisting of a flow label and an element of measurement
interest, both of which are extracted from the packet headers or
sometimes the payload. Two packets are considered to be the
same if they share the same flow label and the same element.
With non-duplicate sampling, the sampled packets no longer
have duplicates. We can use a counter for each flow to keep
track of the number of sampled packets from that flow and
derive the flow spread by taking the sampling probability into
consideration. The experiments in [22], [23[], [24] show that
the non-duplicate sampling solutions outperform the memory-
sharing sketches with better accuracy and smaller overhead in
spread estimation. Moreover, they keep the identifiers of the
sampled flows, whereas many memory-sharing sketches do not.
This paper focuses on advancing the theory and design of novel
non-duplicate sampling solutions.

The existing non-duplicate sampling solutions can be further
divided into two sub-categories: uniform non-duplicate sam-
pling (UNS) [22]], [23], [24] and non-uniform nonduplicate
sampling (NNS) [20], [21]], [25]. UNS samples each packet at
its first appearance with a preset, fixed probability. NNS allows
the sampling probability to evolve in a specific way that cannot
be controlled or set dynamically in real time. We observe that

I'Sketches are compact data structures.

such inflexibility in sampling probability restricts the room for
UNS/NNS to improve their performance. Moreover, there lacks
a rigorous accuracy model for spread estimation in most non-
duplicate sampling solutions.

Our contribution. This paper advances the state of the art
in non-duplicate sampling research with the following contri-
butions.

e We formally introduce the (e, 5)-RE accuracy model for
per-flow spread estimation based on the relative root-mean-
square error, which captures both the bias and the variance
in the estimates. We formalize per-flow spread estimation as a
constrained optimization problem: Given an (¢, 3)-RE accuracy
requirement with user-specified parameters € and (3, our goal is
to maximize the size of the packet stream that we can handle
with a certain amount of memory allocation.

e We introduce a new type of sampling, called (e, (5)-
nonduplicate sampling, and establish the equivalency be-
tween implementing (e, 5)-nonduplicate sampling and achiev-
ing (e, B)-RE accuracy. This establishes the theoretical foun-
dation of ensuring spread estimation accuracy in the sampling
solutions.

e We prove two theorems that lay the ground for modify-
ing the existing UNS and NNS solutions to perform (e, 3)-
nonduplicate sampling. We observe that the existing work
lacks the flexibility in selecting per-flow sampling probabilities,
which limits their efficiency in supporting (¢, 3)-nonduplicate
sampling.

e We propose the idea of individualized non-duplicate
sampling (INS), which allows us to set each flow’s sampling
probability dynamically and independently from other flows.
We design an algorithm based on the idea of INS to implement
(e, B)-nonduplicate sampling more efficiently than the existing
UNS and NNS. We prove the correctness of the algorithm and
determine its optimal parameter.

e We perform extensive experiments using real Internet
traces to evaluate our INS-based solution for spread estimation
in comparison with the state of the art. The experimental results
show that the new solution outperforms the alternatives based on
the existing UNS and NNS. It can support much larger packet
streams under the (¢, 3)-RE accuracy requirement with the same
memory allocation. When dealing with packet streams of the
same size, the new solution achieves much better accuracy in
spread estimation.

II. PRELIMINARIES
A. Flow Model

Consider a packet stream received by a router, a firewall,
or a network device of other type. Each packet is abstracted
as a pair, (f,e), where f is a flow label and e is an element,
which are both extracted from the packet based on application
need. Label f may be source address, destination address, or
any address/port/flag combination (such as the TCP identifier),
found in the packet headers. All packets carrying the same
label f form a flow f. Element e is a value or a value
combination of application interest in the packet headers or
the payload other than the flow label. The spread of flow f is
defined as the number of distinct elements in the flow during a
measurement period. This statistic is important to a wide range

of applications. Consider per-source flows where the source
address of each packet is the flow label and the destination
address is the element under measurement. The spread of
each flow, i.e., the number of distinct destinations that each
source contacts during a measurement period, helps us track
network reconnaissance activities, worm-infected hosts, botnet
communications, and malicious scanners [26], [27]]. Consider
per-destination flows where the destination address is the flow
label and the source address is the element of interest. The
spread of each flow, which is the number of distinct sources that
contacts each destination, helps us track potential botnet-based
denial-of-service or denial-of-quality attacks, service hotspots,
or congested network activities [5]], [28]].

B. Spread Estimation with (e, 3)-RE Accuracy

Measuring the spread of a flow precisely requires us to
remember all elements that we have seen so far, which can be
costly as flow spreads can be in millions or more. This study
considers how to estimate flow spread with a space-efficient,
probabilistic measurement approach. For an arbitrary flow f,
let sy be its actual spread and 55 be an estimate, which is a
random variable under a probabilistic measurement approach
[20], [22], [23], [25]. To assess the accuracy of the estimation,
we use the relative root-mean-square error (RRMSE or RE)
[29], 1301, [31]], which is defined below.

EI(EL - 1)2 0
Sf

where E[-] is the expectation of a random variable. RE(S)
captures both the bias and the variance of the estimation due to

RE(3,))? = (B[57] — 57)* + Fg[(éf — E[3/))’]
Sf
[Bias(87)]? + Var(y)
sp2 '
Refer to [32] for detailed proof.
We define an (e, 8)-RE accuracy requirement as follows: For

any flow with s¢ > f3, its relative root-mean-square error (RE)
must be bounded by ¢, i.e.,

RE(5f) <, 2)

where ¢ € (0,1) and § > 1 are parameters that are set by
the user based on application need. As an example in the
introduction, considering a packet stream in a network, if we set
flow label as the source address and element as the destination
address in packet header, each flow consists of all packets
from a common source and its spread is the number of distinct
destination addresses that the source has contacted. If the spread
of the flow from a source is greater than a threshold 5, we
consider the source as a potential scanner that requires further
monitoring or countering actions. The value of 8 will depend
on traffic statistics of the network. If the spreads from most
normal hosts (sources) are below 10, we can set 3 to 10; but if
most normal spreads are below 50, we will set S accordingly.
Similarly, the value of € is set according to user requirement,
such as 5%, and system tradeoff. There is tradeoff between
accuracy and memory requirement, as a smaller value of €
means a larger amount of memory needed (Theorem [6).

C. Maximizing Stream Size

The accuracy requirement of (2)) serves as a constraint in our
spread estimation design. Any data structure for keeping track
of flow spread must have a way to record the elements that
have been seen in order to remove duplicates. Given a certain
amount of memory allocation, as more and more new elements
are recorded, the data structure will become saturated and will
no longer be able to meet (2). In that case, we have to stop
the current measurement, store the results in a server, clear the
data structure, and start the next run of measurement. Therefore,
any design will have a limit in its supported stream size over
one continuous run of measurement, denoted as n, which is
the number of distinct elements from all flows in the stream
that are processed before the data structure saturates. Note that
elements of different flows are considered to be distinct, such as
(f,e) and (g, e). The goal of this paper is to design a novel and
efficient spread estimation solution that maximizes its supported
stream size under a given (€, 8)-RE accuracy requirement and
a given amount of memory.

III. (e, 3)-NONDUPLICATE SAMPLING

To facilitate the implementation of (e, 5)-RE accuracy for
spread estimation, we introduce a new type of sampling, called
(e, B)-nonduplicate sampling. It samples each distinct packet at
its first appearance in a flow with a certain probability (which
may be set as a constant or change over time), and ignores
all subsequent appearances. Before giving the formal definition
of (¢,)-nonduplicate sampling, we define some notations:
Consider an arbitrary flow f in a data stream. Let Sy be the
sequence of distinct packets, (f,e), in flow f, with sy = |S/|
being the total number of distinct packets in the flow. Let S}
be the subsequence of Sy that are sampled, with s = |S%]
being the total number of sampled packets. Clearly, S} C S;.
With probabilistic sampling, s} is a random variable. For the
kth packet in S}» where 1 < k < s}, let my, be the index of the
same packet in S¢. Under probabilistic sampling, my, is also a
random variable, but in a specific run like the example below,
it has an instance value.

Suppose flow f has three packets, (f,e), (f,e), (f,€). St is
the sequence of two distinct packets, (f,e), (f,e’). Suppose it
is sampled with 50% probability and S’ contains only (f,e€’).
Then my = 2, i.e., the first packet (k = 1) in S} has an index
of 2 (or is the second packet) in Sy.

For the last sampled packet in S%, ie., k = s}, we denote
mg as mj for simplicity. This is an important value. Later,
our solution will be designed to measure the instance value of
s’f in a sampling run, compute E[m?] from the measured value
of s’f, and use E[m;} as our spread estimate for flow f, i.e.,
85 = E[m}].

Definition 1: (¢, 8)-nonduplicate sampling only samples a
packet at its first appearance with a certain probability and for
any flow f with sy > 3, it ensures that

RE(m?) < e, 3)

where

-1)

The implementation of (e, 3)-nonduplicate sampling is to find
a way to determine the sampling probability such that (3) can
be ensured. We have the following theorem that establishes
the linkage between (e, 8)-nonduplicate sampling and spread
estimation with (e, 5)-RE accuracy.

Theorem 1: Given a solution that performs (e, ()-
nonduplicate sampling, by setting 5y = E[m}], we have

E(57) = s

R [1

On the one hand, E[m}], ie., E[mslf], is a fixed value under
a specific sampling run that results in a specific instance value
of s’f Note that M, is a random variable under any fixed value
of s’f On the other hand, s} is a random variable whose value
changes under different sampling runs, and thus E[my |, i.e.,
the flow spread estimate §y, is also a random variable (related to
s}) under different runs. The above theorem gives the expected
value and the error of the estimate 5; under all possible runs.

The proof is provided in the Appendix. When e is small,

_1
1—e2

~ 1. If we want RE(3¢) = €, we have to slightly

tighten sampling to (e, / ﬁ, B)-nonduplicate sampling, which
results in the following corollary.

Corollary 1: A solution that performs (e\/ 3z, 0)-
nonduplicate sampling and computes E[m}] for any flow f
with sy > 3 ensures (¢, 3)-RE accuracy if we set ¢ = E[m}].

Our task now becomes how to efficiently solve (e, f5)-
nonduplicate sampling, measure s’f and compute E(m’]'?) Note

that in the actual implementation we will use (6\/ﬁ152,/3)'
nonduplicate sampling.

IV. INDIVIDUALIZED NON-DUPLICATE SAMPLING

This is the first paper that introduces the problem of (e, 5)-
nonduplicate sampling. Below we will adapt some existing
solutions for other nonduplicate sampling types to address this
problem. We will then point out their inefficiency, and introduce
our new idea to solve the problem efficiently.

A. Uniform Non-duplicate Sampling (UNS)

There exists prior work [22], [23]], [24] that performs uniform
non-duplicate sampling (UNS), which samples each packet
(f,e) with a fixed, preset sampling probability p at the packet’s
first appearance and ignores the duplicates. But they treat p as
a user input. Without knowing how to set p automatically and
properly, they cannot solve the problem of (e, 3)-nonduplicate
sampling. As one of the major contributions in this paper, we
figure out how to set p for (e, 5)-nonduplicate sampling in the
following theorem. (All proofs can be found in the Appendix.)

Theorem 2: Any uniform non-duplicate sampling solution
with p > 15 implements (¢, §)-nonduplicate sampling.

Any UNS solution will need a data structure (typically a
bitmap) to record distinct elements that have been sampled
so far [200, [210], [220, [23], [24], [25]. We want to keep
the sampling probability p as small as possible. Intuitively,
smaller p reduces the number of sampled packets that need
to be recorded, allowing a larger data stream to be recorded
before the data structure is saturated under the constraint of

(2). The smallest sampling probability for any UNS solution
isp = ﬁ We denote this probability as pg. The UNS
solutions use the same, fixed sampling probability for all flows.
Next we argue that using individualized, dynamic sampling
probabilities can do better.

B. Our Idea: Individualized Nonduplicate Sampling (INS)

We have proved the following theorem as the theoretical
foundation for implementing (e, 3)-nonduplicate sampling with
individualized sampling probabilities, one for each flow in a
data stream.

Theorem 3: Any non-duplicate sampling solution with an
individualized sampling probability p; > min{ﬁ, ﬁ}
for each flow f implements (e, 5)-nonduplicate sampling.

For very large flows with sy > 3, which often contribute
most of distinct elements to the data stream, py is much smaller
than pg. In fact, p; approaches to zero as sy increases. There-
fore, using individualized sampling probabilities as suggested
by Theorem[3|can greatly reduce the number of sampled packets
and thus increase the data stream size that we can handle. The
UNS solutions cannot do that by definition, due to their uniform
(fixed) sampling probability. In fact, Theorem [2| uses the most
conservative sampling probability for all flows.

For better performance, according to Theorem |3] we need
to control the sampling probabilities of individual flows and
properly set them to different values. That is a capability absent
from all existing work, include UNS [22]], [23], [24] and non-
uniform nonduplicate sampling (NNS) [20], [21]. Both UNS
and NNS uses a single sampling probability p for all flows, but
NNS allows p to decrease as the data structure is more and
more saturated. To support (e, 3)-nonduplicate sampling, this
probability p must stay above pg. In contrast, our individualized
nonduplicate sampling (INS) proposed in this paper is different:
Each flow has its own sampling probability, which can be set
dynamically and is independent of other flows. Unlike [20],
[21], the sampling probability of a flow does not decrease as the
data structure records packets of other flows. Most importantly,
we need a way to determine the proper value that each flow’s
individual sampling probability should be set to, and do so
dynamically as the packets of the flow are recorded, not only to
implement (e, §)-nonduplicate sampling, but also to maximize
the stream size that we can support.

Ideally, for each flow f, we would simply set p; = ﬁ
for the optimal result. But we do not know s, which is what we
want to estimate. Our idea is: We begin with py = pg = ﬁ
As we sample packets from flow f and record them, we estimate
the number of distinct elements in flow f that we have seen so
far. When this estimate exceeds 3, we will be able to use the
current estimate to replace sy in the formula of p; to produce
a sampling probability that is smaller than pg. As we record
more and more packets from flow f, the value of p; will be
continuously decreased towards the optimal value of

C. Algorithmic Design of INS

Consider an arbitrary flow f. Let ps(k) be the sampling
probability that we will set after k packets in f are sampled
and recorded. When k < 8 x pg, we keep p¢(k) = pg. The
reason is that, as long as k < /8 x pg, with a fixed sampling
probability pg, the estimated number of distinct elements in

_ 1
1+e2s5°

flow f that we have seen is ké < B. But when k > X pg, that
estimated number will be larger than 8 and we will need to set
ps(k) smaller than pg. The exact value of ps(k) is given by the
following theorem. To simplify the notation, let k = [x pg].

Theorem 4: Any non-duplicate sampling solution imple-
ments (e, 3)-nonduplicate sampling if it sets an individualized
sampling probability p;(k) for each flow f as follows: For
0§/€<E,pf(k):p[3. FOI‘]CZ,I_C,

(k) = 1_762 (5)
PIY) = SR + 10
where
] (1+eB)k; 0<k<k
E\my| = 7 1_(1+52)k—E B (6)
(%) Blmg] + —55—3k > k.

The proof can be found in the Appendix. Refer to Section [[I]
for the definition of my. According to Corollary [I] we can
use (6) as the estimation formula for §;: At the end of the
measurement, k = s, and we compute 3y = E[m}] = E[ms}]
from (6). Similarly, at any time, we can compute the spread of
flow f thus far, which is E[my], from (6).

With the individualized sampling probabilities given by The-
orem 4] we describe our algorithm for non-duplicate sampling.
The main data structure is a bitmap B of m bits, which are
initialized to zeros. Let B[i], 0 < i < m, be the ith bit in B.
We also maintain a HashMap M. Each sampled flow f has a
key-value entry in M, with the key being the flow label f and
the value being a counter c; for spread estimation. In our case,
cy keeps track of the number of sampled packets from flow f.
M is common overhead for any sampling-based solution for
spread measurement.

For each arrival packet (f,), we take the two steps of oper-
ation. The first step performs sampling at a variable probability
p1. The second step performs duplicate filtering that has an
intrinsic sampling component with a fixed sampling probability
pe = max{pg, %} This choice of py is to achieve optimal
performance, as we will prove later. The combined sampling
probability pips should be ps(cy), as defined in . Hence,
we should set p; = %jf) in the first step. If the packet is
sampled successfully by both steps, we increase cy by one.
Operation details are given below.

Step 1: Sampling. Retrieve ¢y from M. If there is no entry
of f in M, let ¢; = 0. Compute ps(cs) from (5). Let
pL = pf}ng) = mfxf{(;;)l}. Since pg(cy) will only decrease as
more packets from f are sampled and recorded by cy, p1 will
only decrease as well, which is an important property for the
correctness proof later. We perform sampling with probability
p1 in this step. It can be done by computing a hash value
h(f,e) € [0,1) where h(:) is a uniform hash function. If
h(f,e) < pi1, we continue to Step 2; otherwise, the packet
is ignored (not sampled).

Step 2: Duplicate filtering. We hash the packet (f, e) to a bit
in B, i.e., B[H(f,e)], where H(:) € [0,m) is a uniform hash
function.

o Case I: If B[H(f,e)] = 0, this is the first appearance

of the packet. We set B[H(f,e)] = 1. We then perform
sampling with probability ™2, where z is the number of

z

Algorithm 1: INS for (e, 8)-nonduplicate sampling

Input: ¢, 8
Action: Perform (e, 3)-nonduplicate sampling

1 create a HashMap M

2 create a bitmap B of m bits

3 setz=m, pg = ﬁ p2 = max{pg, 1}

4 for each packet (f,e) do

5 Step 1: Sampling

6 ¢y = M.getDefaultValue(f,0)

8 generate a hash value r = h(f,e) € [0,1)

9 if » < p; then

10 Step 2: Duplicate filtering

1 if B[H(f,e)] =0 then

12 if H(f,e) < @ then

13 M.put(f,cy+1) // the packet is
L sampled

14 set B[H(f,e)] =1

15 z=z—-1

16 if 2 < mps then

17 L terminate sampling

zeros in B and m is the length of B. Only if the packet
is sampled, we record the packet by increasing c; by one
and write ¢y back to M.

o Case 2: If B[H(f,e)] = 1, we ignore the packet to avoid
duplicate.

It is possible that even though this is the first appearance of
(f,e), we hit Case 2 because B[H(f,e)] may have been set to
one by another packet due to hash collision. Nonetheless, the
probability for hitting Case 1 is =, and then the probability
of being sampled in Case 1 is ™22, Hence, the combined
probability for a packet to be recorded through Case 1 is
Z x P2 = p, at its first appearance. For all future appearances,
the packet will hit Case 2 because B[H(f,e)] is set to 1 after
the first appearance.

The above algorithm is formally described in Alg. [} Step
1 is designed to customize the sampling probability of each
flow individually through the use of p;. Different flows may
have different numbers of distinct packets recorded (i.e.,cy) and
consequently their sampling probabilities will be set differently.
Step 2 uses B to sample each packet at its first appearance with
probability p, and to filter duplicates. Keeping p- a constant in
this step ensures that p; can only decrease in Step 1, which is
needed in our correctness proof.

The algorithm terminates when z < mps. Initially, the
number of zeros in B is m and it will decrease as bits are set to
ones, which in turn will increase the sampling probability 72
in Case 1 of Step 2. When z < mpo, that sampling probability
becomes greater than one, which is not possible.

The following three theorems establish the correctness, the
optimality of Alg. [T and the minimum memory allocation
needed. Their proofs can be found in Appendix.

Theorem 5 (Correctness): Alg. |l will sample and record any

packet (f, e) with probability p(cy) at its first appearance and
ignore the packet’s subsequent appearances, where cy is the
number of sampled packets from flow f at the time when packet
(f,e) first arrives.

Theorem 6 (Optimal parameter setting for ps): The optimal
value of p, that maximizes the expected number of distinct
packets that Alg. [T] can handle is

1
p2 = max{ps, . ™
V. EVALUATION

We evaluate the performance of the proposed solutions on
the software platform through experiments based on real-world
data traces.

A. Experimental Setting

There is no prior work for either spread estimation with
(¢, B)-RE accuracy or (¢, 3)-nonduplicate sampling. We imple-
ment, evaluate and compare three solutions developed in this
paper: (1) the INS solution; (2) a solution, denoted as VF+,
designed from our Theorem [2] based on the best uniform non-
duplicate sampling algorithm, VF [24]], with a stream-wide fixed
sampling probability pg; (3) a solution, denoted as FreeRS+,
designed from our Theorem [3] based on the best non-uniform
nonduplicate sampling algorithm, FreeRS [21], with a stream-
wide sampling probability that decreases from 1 to pg. We also
include an existing work SAS-LC [25]. Although it also adapts
sampling probabilities of different flows, it has no mechanism to
control these probabilities and therefore it cannot achieve (e, 3)-
RE accuracy or (e, 8)-nonduplicate sampling. We implement it
for some of the comparisons. Paper [25] also proposes another
sampling solution called SAS-LOG, which is not compared
in this paper because the experiments in [25] have already
demonstrated that it is inferior to SAS-LC for flow spread
measurement in terms of accuracy and memory efficiency (but
has advantage for another task called flow size measurement).

Our experimental comparison is based on the following three
performance metrics. 1) Maximum supported stream size, as de-
fined in Section Given an (e, §)-RE accuracy requirement
and a certain memory allocation, our goal is to maximize the
stream size (in terms of the number of distinct packets in the
stream) that we can handle. For this, we compare INS, VF+ and
FreeRS+, but not SAS-LC because it does not support (¢, 3)-
RE accuracy. 2) Processing time, which is the average time
it takes to process a packet. Processing time can be translated
into streaming throughput. An average processing time of 100ns
corresponds to a throughput of 10 million packets per second.
For a packet stream, that is equivalent to 10Gbps if the average
packet size is 1k bits. 3) Accuracy. To include SAS-LC in
the comparison, we drop the constraint of (¢, 5)-RE accuracy,
but feed the same data stream that INS can handle to other
solutions. In this case, we can only use the original work of
VF and FreeRS, which can handle larger streams without being
limited by the constraint. Then we measure and compare the
percentages of flows that can still meet (2).

The dataset used in our evaluation is real Internet traffic
traces downloaded from CAIDA [33]. The trace has 20 mins
of packets and contain 400 million packets. In our experiments,
the flow labels are the destination addresses in packet IP header

TABLE I: Maximum supported stream size of FreeRS+, VF+ and INS under different values of € and different memory allocations

(Mbits) over the normal dataset. 5 = 5.

€ 0.2 0.15 0.1
Mem. | FreeRS+ VF+ INS | FreeRS+ VF+ INS | FreeRS+ VF+ INS
12.8 | 726111 | 2345103 | 4860917 | 416609 | 1366639 | 2648289 | 188933 | 627092 | 1020194
6.4 | 359676 | 1168832 | 2466170 | 208215 | 683269 | 1225735 94416 | 312534 | 493710
32| 180165 | 584983 (1095587 | 104049 | 341228 | 581010 47078 | 156365 | 236300
1.6 90064 | 291935 | 516507 52117 | 170532 | 280912 23628 | 78084 | 108986
0.8 45000 | 146135 | 248878 26021 85319 | 130585 11722 | 39026 49883

TABLE II: Maximum supported stream size
allocations over the large dataset. 8 = 100.

of FreeRS+, VF+, and INS under different values of ¢ and different memory

€ 0.2 0.15 0.1
Mem(Mbits) | FreeRS+ VF+ INS | FreeRS+ VF+ INS | FreeRS+ VF+ INS
51.2 1 38125464 | 99776071 | 457800134 | 24045818 | 64844082 | 286347902 | 12500002 | 37034447 | 138674464
25.6 | 19120122 | 49654270 | 245434736 | 12036480 | 31827573 | 125922932 | 6258780 | 18428144 | 57151121
12.8 | 9550810 | 24436420 | 92957055 | 6022274 | 15903406 | 51097561 | 3129011 | 9199036 | 24169101
6.4 | 4791819 | 12202811 | 42860077 | 3004795 | 7948300 | 23977130 | 1547925 | 4594863 | 12918407
32| 2386958 | 6119590 | 22007084 | 1490957 | 3947593 | 14622598 762617 | 2298988 5665151

TABLE III: Maximum supported stream size of FreeRS+, VF+
and INS under different values of e and different memory
allocations over the skewed dataset. 8 = 5.

€ 0.2 0.1
Mem(Mbits) | FreeRS+ VF+ INS | FreeRS+ VF+ INS
12.8 | 726111 | 2345103 | 4849501 | 188933 | 627092 | 1224526
6.4 | 359676 | 1168832 | 2489987 94416 | 312534 | 772735
32| 180165 | 584983 | 1285128 47078 | 156365 | 557573
1.6 90064 | 291935 | 805219 23628 | 78084 | 453670
0.8 45000 | 146135 | 568237 11722 | 39026 | 404600

TABLE IV: Percentage of flows in each bin with their empirical
REs bounded by ¢, over the first 400k distinct packets of the
normal dataset. Memory allocated is 6.4Mbits, 5 =5 and € =

0.1.
Bin

[5’23](23,24](24’25](25’26](26’27](27’28](28’29](29’210]> 210
IFlow No,|5580 | 2171 | 799 | 437 | 178 | 110 66 19 22
FreeRS [10.8%)|48.1% |98.8% | 100% | 100% | 100% | 100% | 100% |100%
VF 0 0 0 |78.7%|100% | 100% | 100% | 100% [100%
SAS-LC| 0 0 2.9% |74.8% | 100% | 100% | 100% | 100% [100%
INS 96.4%| 100% | 100% | 100% | 100% | 100% | 100% | 100% [100%

and the elements are the source IP addresses. That is, packets
to the same destination form a flow, and only packets with
both the same source and the same destination are considered
as duplicates. Flow spread is defined as the number of distinct
sources that contact the same destination host, which has an
application for detecting DDoS attacks. The traces contain 4.9
million distinct packets.

We refer to the above dataset as the normal dataset. We
create two more datasets from the normal dataset. The first one
is called the skewed dataset, where the packets of large flows
are concentrated in the packet stream. It simulates the scenario
of launching malicious attacks where a large number of bots
create flush crowd in a short time towards a selected set of
targets. To create this dataset, we move the top 10 largest flows
with a total spread of 363943 to the front of the traffic trace. The
second one is called the large dataset, which is produced by
expanding the normal dataset by 100 times. For each distinct
packet in the normal dataset, we create x distinct packets of
the same flow, where « is a random number from [1, 200]. Our
experiments are performed on a computer with Inter Core Xeon
W-2135 3.7GHz and 32 GB memory.

TABLE V: Percentage of flows in each bin with their empirical
REs bounded by €, over the first 750k distinct packets of the
skewed dataset. Memory allocated is 6.4Mbits, 3 = 5 and € =
0.1.

Bin [5.231](23,2%1[(2%,257[(2°,2%7](25,277](27,287[(28,291 > 2°
No. of flows| 6736 | 2654 | 926 | 518 | 157 | 143 73| 50
FreeRS 0 0 |[24.1%|98.2% | 100% | 100% | 100% |100%
VF 0 0 |21% |80.4% | 100% | 100% | 100% |100%
SAS-LC 0 0 |3.0% |79.8% | 100% | 100% | 100% |100%
INS 96.8%| 100% | 100% | 100% | 100% | 100% | 100% |100%

TABLE VI: Percentage of flows in each bin with their empirical
REs bounded by ¢, over the first 3M distinct packets of the
skewed dataset. Memory allocated is 6.4Mbits, 3 = 32 and

e =0.1.
Bin 25,261 1(25,271 [(27,2871 [(28,291 [(29,2161 [> 216
No. of flows | 5941 2234 764 292 321 5
FreeRS 57% | 65.1% | 958% | 100% | 100% | 100%
VF 83% | 292% | 34.5% | 342% | 423% | 100%
SAS-LC | 358% | 61.9% | 77.6% | 75.0% | 85.0% | 100%
INS 99.6% | 100% | 100% | 100% | 100% | 100%

B. Results of Maximum Supported Stream Size

Our first experiment compares the maximum supported
stream sizes of INS, VF+ and FreeRS+ under the constraint
of (&, 3)-RE accuracy, over the normal/skewed/large datasets.
The value of € varies from 0.1 to 0.2 for all datasets. For
the normal/skewed datasets, the memory allocation varies from
0.8Mbits to 12.8Mbits and § = 5. As we have explained in
Section [[V-C| HashMap is common overhead for any sampling-
based solution for spread measurement, its memory is not
counted in experiments for each algorithm. For the large dataset,
the memory allocated and the value of 8 are correspondingly
increased: memory varies from 3.2Mbits to 51.2Mbits and
8 = 100.

When we feed the packets of a dataset to a solution, we stop
when its data structure has recorded too many packets and can
no longer ensure the (¢, 3)-RE accuracy. For VF+, that happens
when it can no longer perform sampling with probability pg, a
detectable condition in [24], For FreeRS+, that happens when its
stream-wide sampling probability drops below pg. For INS, that
happens when the sampling probability in Case 1 of Step 2 is

greater than 100%. When that happens, we have the maximum
stream size supported by the solution.

Table [I| presents the maximum stream sizes supported by
different solutions over the normal dataset under different e
values (columns) and different memory allocations (rows). INS
always supports a larger stream under the same e and memory
allocation. For example, When memory allocated is 12.8Mbits
and € = 0.2, INS can support 2.07 times and 6.69 times of the
stream sizes that VF+ and FreeRS+ can support, respectively,
thanks to individualized sampling probabilities.

Our improvement is more significant under the skewed
dataset, shown in Table INS increases the maximum sup-
ported stream size by up to 9.36 and 32.51 compared to VF+
and FreeRS+, respectively. The maximum supported stream
sizes of VF+ and FreeRS+ are insensitive to data skewness
because their sampling probabilities are the same to different
flows. However, INS sets different sampling probabilities to dif-
ferent flows. When the packets of a large flow are concentrated,
they will quickly drive the flow’s sampling probability down and
reduce the number of sampled packets that need to be recorded,
which delays the saturation of the underlying data structure.

Table [[I] shows the maximum stream sizes over the large
dataset. INS’s advantage over FreeRS+ and VF+ remains sig-
nificant. For instance, when ¢ = 0.2 and M = 51.2Mbits, INS
extends the maximum supported stream size by 3.58 times and
11.00 times compared to VF+ and FreeRS+, respectively.

C. Processing Time

TABLE VII: Average processing time of FreeRS+, VF+ and
INS. Memory allocation is 6.4Mbits, € = 0.1 and 5 = 5 for
each solution.

Algorithm | FreeRS+ | VF+ | INS
Time (ns) 136 94 | 113

Our second experiment compares the average processing time
per packet of INS, VF+ and FreeRS+ with ¢ = 0.1, § = 5, and
memory allocation of 6.4Mbits. We feed each solution a portion
of the normal dataset up to the maximum size that the solution
can support under those parameters, which can be found in
Table [Il Table presents the average processing time. The
results show that the processing times of the three solutions
are comparable, with VF+ modestly better than INS, which is
in turn modestly better than FreeRS+. They can all process
millions of packets per second.

D. Results of RE

Our third experiment compares the actual accuracy of
FreeRS, VF, SAS-LC and INS in spread estimation by feeding
all of them with the same packet stream that INS can handle. In
order for this experiment to work, we have to drop the constraint
of (¢, 8)-RE accuracy and use the original solutions of FreeRS
[21] and VF [24], instead of our versions built on Theorems 213}

For each solution, we run it over each dataset for 1000
times with different random seeds, calculate the empirical RE
for each flow from the 1000 instance values of the error, and
check whether holds for each flow whose actual spread
is greater than or equal to (3. The experimental results are
presented in Tables for the normal dataset and the skewed

TABLE VIII: Percentage of flows in each bin with their
empirical REs bounded by e, over the first 2.8M distinct packets
of the normal dataset. Memory allocated is 6.4Mbits, § = 32
and € = 0.1.

Bin (25,2611 (25,271 [(27,281 [(28,291 [(292141 [> 24
No. of flows | 5656 | 2225 700 249 298 6
FreeRS 57% | 651% | 958% | 100% | 100% | 100%
VF 11.4% | 36.5% | 49.4% | 54.6% | 60.4% | 100%
SAS-LC | 359% | 842% | 85.5% | 87.9% | 91.9% | 100%
INS 99.8% | 100% | 100% | 100% | 100% | 100%

dataset, respectively. The flows are divided into a number of
bins based on their spreads. The bins cover the spread ranges of
(0,1],(1,2],(2,4], (4,8],, (2, 21T1]..., respectively. We only
present the bins whose ranges are above 8 and may merge
some bins to make the tables concise. For each bin, we show
the pecentages of its flows that meet (2), i.e., their empirical
RE values are bounded by e.

Table [[V] shows the results over the normal dataset when
memory allocation is 6.4Mbits, S = 5 and € = 0.1. We use the
first 400k distinct packets from the normal dataset, which can
be handled by by INS with the given parameter values of (3
and e. We choose the system parameters for VF, FreeRS and
SAS-LC based on their original papers. The results show INS
outperforms FreeRS, VF and SAS-LC in estimation accuracy.
Specifically, for INS, the empirical REs of all flows in all bins
except for [5,8] are within the bound e. For the bin [5, 8], the
empirical REs of 96.4% flows are within the bound, where an
empirical RE based on measured data could deviate slightly
from the true mean. In contrast, for FreeRS, its percentages of
flows that meet @]) are only 10.8% and 48.1% in the bins [5,
8] and [8, 16), respectively, which contain the vast majority of
all flows. VF and SAS-LC perform much worse. For VF, its
percentages of meeting are zeros for the bins [5, 8], [8, 16),
and [16, 32). For SAS-LC, its percentages of meeting for
those bins are zero, zero and 2.9%, respectively. One may argue
that only the large flows are important, which we do not agree:
First, if a user sets S = 5 as in the experiment, it means that
flows of spreads 5 and larger are all important. Second, stealthy
attacks may indeed be performed with small or modest spreads
[L], [34], and measuring them over time can reveal persistence,
changes or other patterns for attack detection. If we increase
B to focus on larger flows, we observe similar comparison.
Table shows the results of the same experiment except for
B = 32. INS ensures (¢, 3)-RE accuracy consistently across all
bins. FreeRS cannot do that for bins up to (128, 256], VF up
to (22,2'4], and SAS-LC up to (2%,2%4].

Table [V] shows the results over the skewed dataset when
memory allocation is 6.4Mbits, 5 = 5 and € = 0.1. We use
the first 750k distinct packets because INS can handle a larger
stream size for the skewed dataset, as shown in Table INS
still ensures (¢, 3)-RE accuracy consistently across all bins.
The performance of FreeRS is much worse. Its percentages of
meeting ([Z]) for the bins of [5, 8], (8, 16] and (16, 32] are zero,
zero and 24.1%, respectively.

Table [VI] shows the results under the same parameter setting
as above except for 8 = 32. Again, INS significantly outper-
forms FreeRS, VF and SAS-LC in spread estimation accuracy.

VI. RELATED WORK

The most related work is the solutions based on non-duplicate
sampling [22] [23], [25], where the most recent work called
Virtual Filter (VF) [24] achieves the best memory efficiency
and lowest processing overhead. In the context of this paper,
the above work is also called uniform non-duplicate sampling.
Before the formal definition of non-duplicate sampling, Ting
designed a similar method for spread measurement [20]. It
maintains a data structure, e.g., a bitmap and an HLL [12],
[13], to filter each packet. Only packets of the first appearance
have a probability to make changes in the data structure, where
the probability p will only decrease as more distinct packets are
recorded. In general, this method is also based on non-duplicate
sampling if we relax p to be variable. It can be categorized into
non-uniform nonduplicate sampling. It is proposed to estimate
the spread of a single flow. FreeBS and FreeRS in [21] apply
this method to per-flow spread estimation using a large bitmap
and a large HLL, respectively. However, the accuracy of flows
will be affected by the appearance order. If a flow appears in
the tail of the data stream, its sampling probability is small and
will be estimated inaccurately.

There is another thread of solutions based on sketches for
spread measurement [14], [15], [16], [17], [18], [19], [35],
[36]. They use compact data structures for packet recording
and produce approximate spread estimates. While they can fit in
the limited on-chip memory, they make sacrifices in estimation
accuracy by allowing multiple flows to be mapped to the same
spread estimator [15], [18], [19], [35] (or a part of the spread
estimator [14], [16], [L7Z], [L8]], [19]).

VII. CONCLUSION

This paper introduces a new (e, §)-RE accuracy model for
spread estimation and a new (¢, 8)-nonduplicate sampling type,
and theoretically establishes their equivalency. We provide
theoretical instruction for existing solutions based on non-
duplicate sampling to support (e, 5)-nonduplicate sampling but
we observe they are inefficient in doing so. This paper designs
a novel, efficient algorithm based on individualized per-flow
sampling with theoretical analysis of the correctness, optimal
parameter setting and memory consumption. Our experimental
results based on real Internet traffic traces demonstrate that
the proposed solution outperforms existing sampling-based so-
lutions significantly in terms of maximum supported packet
stream size under a given (e, 5)-RE accuracy requirement or
in terms of accuracy with the same packet stream size, and
demonstrate the superior accuracy performance over existing
the state-of-the-art sketch-based solutions to spread estimation.

APPENDIX. THEOREM PROOFS

Proof of Theorem [I] We consider an arbitrary flow containing
g distinct packets. Let L, with ¢ > 1 be the number of sampled
packets by (e, §)-nonduplicate sampling if ¢ distinct packets are
loaded. Define variable Y, as

L
Va>1,Y, = H;O(l + (a—1)p;),

where p; is the sampling probability after the jth packet and
before (j+1)th packet are sampled. This is the finest granularity

we can consider— we cannot change the probability each time
when we load a new distinct packet because we do not know
the packet is a new distinct packet or not. We use p_;, which
can be any constant.

Apparently, if L, = ¢, we have

Lyy1 =i+ Bernoulli(p;).
Furthermore, if L, =, we have

E(Yy41[Y0, ..., Yy) = B[Yy|(Lgy1 = 1)
+Yo(1+ (a—1)p;)| Lgs =i+ 1)]
=Yyl —pi+pi(1+ (a—1)p;)] = Ysa (8)
Therefore, {a~ %Y, : ¢ = 0,1, ...} is a martingale and we have
E(Yy) = a?(1 — (a— 1)p2}).
That means
-1\ _ Ly 1
a’(l—(a—1)p7;) = E(HFO(1 —(a=1p;2y). O

Before we continue with the above equation, we consider my.
Define T}, = mj;, — my—1 and let mg = 0. Since each distinct
packet is sampled independently with probability of py_1, T}
complies with the geometric distribution, i.e.,.Pr(Ty = i) =
(1—pr_1)""'pr_1. According to the property of the geometric
distribution, we obtain the expectation and variance of T}, k >
1 as

E(T)) = pklll
Var(Tk) = (1 _pkfl)plir

The expectation and variance of my_ can be calculated as

{E(quwq) =E(0 (Th) = S8t vty

(10)
(1)

Lq L, o (12)
Var(mu, |Lq)=Var(}_ LyTk)=) 2,2y (1=pr-1)pi 2
Since (¢, 3)-nonduplicate sampling requires RE(my,) < e.
Let e = /C !, Without loss of generality, we set RE(mr,) =
€= \/571. From (@), we have

E*(my,|Ly)
Var(my,|Lg) = Tq
Combining with (12), we know
Lq Lq 2
(1—pr—1) - - E*(my,|Lg)
Aopion) 3% 2,) - sl
=1 Pr-1 k=1
By some calculation, we have
EQ(qu‘Lq)

La (o
Z bl (Pp21) = C
This result will be used in the following.
Taking first derivative for (9) at @ = 1, we have ¢ +p_1 =
EY["p; = E[E(mg|Ly)] + pZ]. Therefore,

+E(mp,|Lg).

E[E(mz,|Ly)] = q. (13)

This means E(mp,|L,) is an unbiased estimate of ¢.

Taking the second derivative at a = 1, we have
Lq

Lq — —
alg—1)+2gp=1 =EQY_ " i) —BQ_ | pit)
= E(E(mz,|Lq) +p21)° —E(p_7
+E(my,|Lg) + C'E*(my, |Ly)). (14)
Adapting (I3) to the above equation, we have
E(E*(my,|Lq)) = ¢*C/(C — 1). Thus, we have
RE(E(my,|L,) = /(€= 1)

Our above analysis applies for arbitrary sub-stream with ¢
distinct packets. For a special case of flow f with sy distinct
packets and c; sampled packets, if we use E(m.,|cy) to esti-
mate sy, The estimate §; satisfies RE(S7) = /(C —1)7! =

1/(1 — €2). The theorem holds.

Proof of Theorem]2 By setting p; = p,Vi > 0 in and
adapting them to (), we can calculate RE(my) as
VA
RE(my,) = E?r ™) _ A=kt
(e, B)-nonduplicate sampling requires that RE (my,) < e for any
flow with spread of < 3. Those flows are expected to have Sp~!

sampled packets. By adapting RE(my) < e and k = p~! to
the above equation, we obtain p > The theorem holds.

> B,

According to Theorem [2{ we

T
Proof of Theorem [For any flow f, if sy

mln{ 1+6 sf? 1+€2ﬂ} 1+61 sf”
know that setting p > 1 +€128f implements (e, s y)-nonduplicate
sampling and therefore by definition we have RE(m}) < e
If sy < B, it is excluded from the target set of flows whose
accuracy should guaranteed in (e, §)- nonduplicate sampling.
Therefore, for any flow f, as long as py > min{ =+ +62

sf? 1+62ﬁ}
(¢, B)-nonduplicate sampling is implemented.

Proof of Theorem [We prove by induction. Consider the
process producing the (k + 1)th sampled packets in flow f
with k& > k. We need to ensure RE(my41) = RE(my) = e.
Let t;, = E(myg) and T, = my — my—;. Combining with @),
we have

Var(myy1) Var(mg) 2 Var(my,) + Var(T})
thi th (te + E(T%))?

. e2t3 +Var(Ty,) _
The above equation can be transformed to 7(T TE(T)?

Adapting (I0) and (TI) to the above equation, we have

2 4+ (1 - pf(k))pf(’f)_2262 < pr(k)= —_

6

(16)

(tk +ps(k)=1)? 2tpe2 + 17
Now let’s consider the value of ;. Since
tr =tr_1 -‘rE(Tk) =tr_1+ [pf(k — 1)]_1,

combining with (I6), we can obtain ¢;_; as

ty =

This equation is recursive. Since the initial value is t; =

(1 + €2B)k, we can derive the value of t;, Yk > 1.E(my,) =t}
z AL

is (1+ 2Bk, if 0 < k < k, and is (§£5)FFt; +

1 (Lo)k : . . .
L 2‘:2 otherwise. The above probability setting achieves

(¢, B)-nonduplicate sampling. Specifically, in the boundary case
where sy = 3, it is expected to have 8pg < k sampled packets.
As a result, it will only experience the sampling probability
of pg, leading to (e, B)-nonduplicate sampling as proven in
Theorem [3] l For sy > 3, our parameter setting ensures that
RE(my.41) = RE(my,) = € for every k > k. Therefore, (¢, 3)-
nonduplicate sampling always holds.

Proof of Theorem (5| We first prove that the duplicates will be
discarded. For any packet (f, e), after it passes through Step 1,
it is always hashed to B[H(f,e)]. It can pass through Step 2
only if B[H(f,e)] = 0 when it arrives. In this case, (f, e) must
be a new packet otherwise its first appearance must (1) be able
to pass through Step 1 as the sampling probability in Step 1 p;
will only decrease — if h(f,e) < p; now, h(f,e) < p; must
hold at its first appearance; (2) have already set B[H (f,e)] =1
which contradicts to the fact that B[H(f,e)] = 0. Therefore,
Step 2 can remove duplicates. Next we consider the sampling
probability for the packet at its first appearance. It passes
through Step 1 with the probability of p1 = pf(cys)/p2. It passes
through Step 2 only when B[H(f,e)] = 0and H(f,e) < mps
B[H(f,e)] = 0 happens with probability of = as there are z
bits that are zero and H(f,e)] is a random hash value in the
range of [0,m — 1]. H(f,e) < @ happens with probability

of 7”2"2 = "2 < 1asz>mpo before termination. Overall,
the total samphng probability is

piley) 2 b = ps(er)-

z

b2 m z
Proof of Theorem [6] Let n be the expected number of
distinct packets to be processed in Alg. [I] with a bitmap with
m bits. According to [10], the expected number of distinct
packets recorded in the bitmap B is —mIn Z. The algorithm
terminates when z < mps, at that time the expected number of
distinct packets recorded in B in Step 2 is —m Inps. Define
the average sampling probability P in Step 1 for all flows
as P = —mlnpy/n. As the sampling probability evolves
separately for each flow, the value of P varies for different flow
distributions. Our parameter setting should maximize the value
of n regardless of the flow distribution. The worst case happens
when P is maximized, corresponding to the flow distribution
that all flows’s spread will not exceed /3 and p; = :;—‘2’ holds all

bs — —mlnps from which
P2 n

we obtain n = b . Since pa > pg, by some calculation
and derivation, the maximum of n can be obtained as follows.

the time. In the case, we have P =
—mps2 In po

where py = 1/e;

. p’;e, if0<pg<l/e
—mInpg, where po

17
=pp; if 1 <pg <1

Therefore, the optimal setting for py is p; = max{pg, 1/e}.

ACKNOWLEDGMENT

This work is supported by the University of Kentucky start-
up fund. Shigang Chen is the corresponding author.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D. Song,
and M. Kao, “Detecting Stealthy Spreaders Using Online Outdegree His-
tograms,” Proc. of IEEE International Workshop on Quality of Service’07,
pp. 145-153, June 2007.

A. Chen, L. Li, and J. Cao, “Estimating Cardinality Distributions in
Network Traffic,” in Proceedings of the 2008 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer systems,
2008, pp. 459-460.

A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification Mechanism
to Defend against DDoS Attacks,” Proc. of IEEE Symposium on Security
and Privacy, May 2003.

X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in
the Air: Exploiting Content Caching and Delivery Techniques for 5G
Systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131-139,
2014.

S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and Elastic DDOS Defense,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 817-832.

W. Jiang, G. Feng, and S. Qin, “Optimal Cooperative Content Caching and
Delivery Policy for Heterogeneous Cellular Networks,” IEEE Transactions
on Mobile Computing, vol. 16, no. 5, pp. 1382-1393, 2016.

A. Praseed and P. S. Thilagam, “DDoS Attacks at the Application Layer:
Challenges and Research Perspectives for Safeguarding Web Applica-
tions,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
661-685, 2018.

L. Tang, Q. Huang, and P. P. Lee, “SpreadSketch: Toward Invertible and
Network-Wide Detection of Superspreaders,” in [EEE INFOCOM 2020-
IEEE Conference on Computer Communications. 1EEE, 2020, pp. 1608—
1617.

C. Ma, S. Chen, Y. Zhang, Q. Xiao, and O. O. Odegbile, “Super Spreader
Identification using Geometric-min Filter,” IEEE/ACM Transactions on
Networking, vol. 30, no. 1, pp. 299-312, 2021.

K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM Trans-
actions on Database Systems, vol. 15, no. 2, pp. 208-229, June 1990.
P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer and System Sciences, vol. 31,
pp. 182-209, September 1985.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Proc. of
AOFA, pp. 127-146, 2007.

S. Heule, M. Nunkesser, and A. Hall, “HyperLoglog in Practice:
Algorithmic Engineering of a State-of-The-Art Cardinality Estimation
Algorithm,” Proc. of EDBT, pp. 683-692, 2013.

M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Compact Spread Estimator
in Small High-Speed Memory,” IEEE/ACM Transactions on Networking,
vol. 19, no. 5, pp. 1253-1264, October 2011.

M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” Proc. of USENIX Symposium on Networked Systems
Design and Implementation, 2013.

Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality Estimation for Elephant Flows: A Compact Solution based
on Virtual Register Sharing,” IEEE/ACM Transactions on Networking,
2017.

Z. Zhou and B. Hajek, “Per-flow Cardinality Estimation based on Virtual
Loglog sketching,” in 2019 53rd Annual Conference on Information
Sciences and Systems (CISS). 1EEE, 2019, pp. 1-6.

Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
Sketch Families for Network Traffic Measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, pp. 1-34, Dec. 2019.

H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Random-
ized Error Removal for Online Spread Estimation in Data Streaming,”
Proceedings of the VLDB Endowment, vol. 14, no. 6, 2021.

D. Ting, “Streamed Approximate Counting of Distinct Elements: Beating
Optimal Batch Methods,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2014,
pp. 442-451.

P. Wang, P. Jia, X. Zhang, J. Tao, X. Guan, and D. Towsley, “Utilizing
Dynamic Properties of Sharing Bits and Registers to Estimate User
Cardinalities Over Time,” in 2019 IEEE 35th International Conference
on Data Engineering (ICDE). 1EEE, 2019, pp. 1094-1105.

Y.-E. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online
Spread Estimation with Non-duplicate Sampling,” in /IEEE INFOCOM
2020-1EEE Conference on Computer Communications. 1EEE, 2020, pp.
2440-2448.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

H. Huang, Y.-E. Sun, C. Ma, S. Chen, Y. Du, H. Wang, and Q. Xiao,
“Spread Estimation with Non-duplicate Sampling in High-speed Net-
works,” IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp. 2073—
2086, 2021.

C. Ma, H. Wang, O. O. Odegbile, and S. Chen, “Virtual Filter for Non-
duplicate Sampling,” in 2021 IEEE 29th International Conference on
Network Protocols (ICNP). 1EEE, 2021, pp. 1-11.

Y. Du, H. Huang, Y.-E. Sun, S. Chen, and G. Gao, “Self-adaptive
Sampling for Network Traffic Measurement,” in /EEE INFOCOM 2021-
IEEE Conference on Computer Communications. 1EEE, 2021, pp. 1-10.
Z. Durumeric, M. Bailey, and J. A. Halderman, “An Internet-wide View
of Internet-wide Scanning,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 65-78.

S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm
Fingerprinting.” in OSDI, vol. 4, 2004, pp. 4-4.

S. Sen and J. Wang, “Analyzing Peer-to-peer Traffic Across Large
Networks,” in Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment. ACM, 2002, pp. 137-150.

C. J. Willmott and K. Matsuura, “On the Use of Dimensioned Measures of
Error to Evaluate the Performance of Spatial Interpolators,” International
Journal of Geographical Information Science, vol. 20, no. 1, pp. 89-102,
2006.

R. J. Hyndman and A. B. Koehler, “Another Look at Measures of Forecast
Accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679—
688, 2006.

R. G. Pontius, O. Thontteh, and H. Chen, “Components of Information
for Multiple Resolution Comparison between Maps That Share a Real
Variable,” Environmental and ecological statistics, vol. 15, no. 2, pp. 111—
142, 2008.

Wikipedia, “Section 1.2.1 of Mean Squared Error: Proof of Variance
and Bias Relationship,” https://en.wikipedia.org/wiki/Mean_squared_.
error, 2022.

UCSD., “Caida ucsd anonymized 2015 internet traces on jan. 17,” https:
/Iwww.caida.org/data/passive/passive_2015_dataset.xml, 2015.

Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the Persistent
Spreads in High-speed Networks,” in 2014 IEEE 22nd International
Conference on Network Protocols. 1EEE, 2014, pp. 131-142.

C. Ma, O. O. Odegbile, D. Melissourgos, H. Wang, and S. Chen, “From
countmin to super kjoin sketches for flow spread estimation,” IEEE
Transactions on Network Science and Engineering, 2023.

X. Song, J. Zheng, H. Qian, S. Zhao, H. Zhang, X. Pan, and G. Chen,
“Couper: Memory-efficient cardinality estimation under unbalanced distri-
bution,” in 2023 IEEE 39th International Conference on Data Engineering
(ICDE). 1IEEE, 2023, pp. 2753-2765.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://www.caida.org/data/passive/passive_2015_dataset.xml
https://www.caida.org/data/passive/passive_2015_dataset.xml

	Introduction
	Preliminaries
	Flow Model
	Spread Estimation with (,)-RE Accuracy
	Maximizing Stream Size

	(,)-Nonduplicate Sampling
	Individualized Non-duplicate Sampling
	Uniform Non-duplicate Sampling (UNS)
	Our Idea: Individualized Nonduplicate Sampling (INS)
	Algorithmic Design of INS

	Evaluation
	Experimental Setting
	Results of Maximum Supported Stream Size
	Processing Time
	Results of RE

	Related Work
	Conclusion
	References

