
Distributed Non-Duplicate Sampling with
Application on Network-wide Flow Cardinality

Estimation
Aayush Karki1 Zibo Liu2 Shigang Chen2 Haibo Wang1

1Department of Computer Science, University of Kentucky, USA
Email: {aka334, wanghaibo}@uky.edu

2Department of Computer & Information Science & Engineering, University of Florida, USA
Email: {ziboliu@ufl.edu, sgchen@cise.ufl.edu}

Abstract—Non-duplicate sampling (NDS) is a recently pro-
posed technique that selects items from a data stream with
probability p only on their first appearance, effectively handling
duplicate items. While NDS has shown promise in the network
application on flow cardinality measurement by outperforming
sketch-based approaches, it faces limitations in distributed envi-
ronments where traffic flows span multiple measurement points.
To address this challenge, this paper proposes distributed non-
duplicate sampling (DNDS), which extends NDS to multiple
sampling points by ensuring each item is globally selected with
probability p exactly once, regardless of where its appearances
occur. We present the first comprehensive study of DNDS,
focusing on its application on network-wide flow cardinality
estimation. We develop an efficient implementation of DNDS
with theoretical guarantees and derive optimal parameter set-
tings. We propose two novel DNDS-based solutions for network-
wide flow cardinality estimation. Through extensive experimental
evaluation using real network traffic traces, we demonstrate
the effectiveness of the DNDS implementation and demonstrate
that our solutions achieve up to 10× improvement in estimation
accuracy compared to state-of-the-art sketch-based methods.

I. INTRODUCTION

Background: Consider an input data stream. Traditional sam-
pling outputs a sub-stream by selecting each data item in the
stream independently with a given probability p. Now suppose
the stream is a multi-set, meaning that any item may appear
multiple times. Non-duplicate sampling (NDS) selects each
data item for its first appearance with probability p, while
ignoring all subsequent appearances [1].

One application of NDS is flow cardinality estimation.
Recent research advocates the implementation of network
traffic measurement in real-time on the data plane [2], [3],
[4], providing critical information that is essential to various
network functions, from intrusion detection to performance
optimization to service provision. One important measurement
is on the number of distinct packets in each flow, called flow
cardinality, where two packets are distinct (or identical) if
their attributes of interest are different (or same). For example,
consider per-destination flows where all packets to the same
destination address form a flow, with the source address of
each packet being the attribute. In this case, a flow’s cardinality
is the number of distinct sources that send packets to the flow’s

destination. Monitoring this information for all destinations
in a network helps identify potential DDoS attacks [5]. For
another example, consider per-source flows where all packets
from the same source address form a flow, with the destination
address of each packet being the attribute. A flow’s cardinality
is the number of distinct destinations that the flow’s source
send packets to. Monitoring this information for all sources in
a network helps identify potential scanners [5].

Flow cardinality measurement requires us to remember all
attributes that have been seen in each flow so that duplicates
can be removed, which however requires excessive memory
for implementation on the data plane. Most solutions to this
problem use sketches, which are compact, probabilistic data
structures that provide estimates instead of precise counts. The
sketches for estimating the cardinality of a single flow include
bitmap [6], FM [7], multi-resolution bitmap (MRB) [8], KMV
[9], LogLog [10], HyperLogLog (HLL) [11], [12], and self-
morphing bitmap [13], each requiring hundreds or more bits in
order to handle a large cardinality range. For millions of flows,
it is not practical to assign each flow a separate sketch on the
data plane. Hence, the multi-flow solutions must share sketches
among the flows, which however degrades the accuracy of
cardinality estimation [14], [5], [15], [16], [17], [18], [19],
[3], [20], [21], [2].

This is where NDS comes in [1], [22], [23], [24], [25],
[26]: Each packet is modeled as a data item, consisting of
a flow label and an attribute; for per-destination flows, the
flow label is destination address and the attribute is the source
address. Because NDS removes all duplicates, it makes the
problem of counting distinct packets much easier. It also per-
forms sampling, allowing tradeoff between counting accuracy
and processing overhead. The NDS solutions for cardinality
estimation have demonstrated superior performance compared
to their sketch-based counterparts [22], [23], [24].
New Problem: This paper studies a new problem of dis-
tributed non-duplicate sampling (DNDS), with an application
on network-wide cardinality estimation. Consider multiple
data streams, each at a separate sampling point. The same
item may appear multiple times and in different streams. The
problem is to perform distributed and cooperative sampling at

those points such that each data item is globally selected with
probability p for one appearance while all other appearances
are ignored, regardless of their locations. Exactly one appear-
ance of each item globally will have a probability p of being
selected, and all other appearances have zero chance.

DNDS matches well to network-wide cardinality estimation,
where each flow may be distributed at multiple measurement
points across a network. Consider a network with multiple
gateways for robust Internet access. Suppose a traffic mea-
surement module is deployed at each gateway to monitor per-
destination flow cardinality in the inbound traffic for potential
DDoS attacks or monitor per-source flow cardinality in the
outbound traffic for potential scanners in its network. Perform-
ing NDS at each gateway independently cannot remove all
duplicates because duplicate packets (from the same source
to the same destination) could pass different gateways and
therefore they may be selected for more than once. Solving
this problem will require DNDS, which promises to remove
duplicates globally.
Contribution: This paper is the first to study DNDS. To
demonstrate its practicality, we will use network-wide flow
cardinality as the context to describe our solution. The contri-
butions are threefold:

First, we define a new type of sampling called distributed
non-duplicate sampling (DNDS), with application on network-
wide flow cardinality estimation. We develop an efficient algo-
rithm to implement DNDS, which requires only one hash per
packet. We present theoretical analysis to prove its correctness
and derive optimal parameters.

Second, we propose DNDS-based solutions for network-
wide flow cardinality estimation under two different models.
The first model is an on-chip-off-chip model, where DNDS
is deployed in on-chip memory to process packets in real
time. The sampled packets, with a significantly lower rate than
the original packet stream, are processed in off-chip memory
for better estimation accuracy. The second model is an on-
chip model, where both DNDS and post-DNDS processing
are deployed in on-chip memory for real-time estimation in
the data plane.

Third, we implement the new sampling algorithm and the
two solutions for network-wide flow cardinality estimation.
Trace-driven experimental results demonstrate that the new
sampling algorithm is highly efficient and that the DNDS-
based solutions reduce estimation error by up to 10× com-
pared to the state-of-the-art sketch-based solutions for cardi-
nality estimation.

II. NETWORK-WIDE FLOW CARDINALITY ESTIMATION

We introduce the problem of network-wide flow cardinal-
ity estimation, which is used as the application context for
distributed non-duplicate sampling in the next section.

A. System Model

We consider a network with u measurement points, denoted
as P0,P1, . . . ,Pu−1, which may be gateways, routers or
switches, each implementing a traffic measurement module.

Tasks Flow label Attribute
Super spreaders src IP dstIP

(stealthy) DDoS attacks dstIP srcIP
Port scan srcIP-dstIP dstPort

Heavy hitters srcIP-dstIP timestamp

SYN-flood srcIP-srcPort-
dstIP-dstPort timestamp

Stealthy scanner srcIP dstIP-dstPort
TABLE I: Examples of flow cardinality definitions under
various network tasks.

Each measurement point Pi, 0 ≤ i < u, receives a packet
stream Si. Let the grand packet stream be G =

⋃u−1
i=0 Si.

Consider the following example, where u = 3 and there
are four packets, x0, x1, x2 and x3, whose routing paths are
P0 → P1, P1 → P2, P0 → P2, and P1, respectively. The
packet streams at the measurement points are S0 = {x0, x2},
S1 = {x0, x1, x3}, and S2 = {x1, x2}. The grand stream is
G = {x0, x0, x1, x1, x2, x2, x3}.

B. Flow Model

Each packet x is modeled as a pair x = ⟨f, e⟩, where f is a
flow label and e is an attribute. We define a flow f as the set of
packets that share the same flow label f . The label may be the
five-element tuple for TCP. It may also be source address (for
per-source flow), destination address (for per-destination flow),
destination address/port (for per-service flow), URL (for per-
content flow considering HTTP traffic only), etc. The attribute
e is typically chosen as a value or a combination of values
from the packet headers or payload.

C. Network-wide Flow Cardinality Estimation

Two packets are distinct if they belong to different flows
or their attributes are different; otherwise, they are identical.
For a packet stream, a flow’s cardinality is defined as the
number of distinct packets in the flow. For a grand packet
stream, a flow’s network-wide cardinality is its number of
distinct packets across all measurement points. The problem
of network-wide flow cardinality estimation is to provide an
estimate for the network-wide cardinality of any given flow.

Continue the example in Section II-A. Assume that all the
packets belong to flow f . Let x0 = ⟨f, e0⟩, x1 = ⟨f, e0⟩,
x2 = ⟨f, e1⟩, and x3 = ⟨f, e2⟩. Packets x0 and x1 are
identical. The grand packet stream G is {⟨f, e0⟩, ⟨f, e0⟩,
⟨f, e0⟩, ⟨f, e0⟩, ⟨f, e1⟩, ⟨f, e1⟩, ⟨f, e2⟩}. The network-wide
cardinality of f is 3 because there are three distinct attributes
e0, e1, e2 in the flow. In contrast, the packet streams at the mea-
surement points, P0, P1 and P2, are S0 = {⟨f, e0⟩, ⟨f, e0⟩},
S1 = {⟨f, e0⟩, ⟨f, e0⟩, ⟨f, e2⟩}, and S2 = {⟨f, e0⟩, ⟨f, e1⟩},
respectively. The cardinalities of flow f at P0, P1, and P2 are
1, 2, and 2, respectively. In general, the measurement points
cannot individually provide accurate network-wide flow car-
dinality estimation. They need to work together, distributedly.

Some different flow types and the network tasks that their
cardinalities may support can be found in Table I.

III. DISTRIBUTED NON-DUPLICATE SAMPLING

A. Challenges for Network-wide Cardinality Estimation
To estimate the network-wide flow cardinality for any flow,

it is necessary to eliminate duplicate packets within the flow.
There are two types of duplicates:

• Intra-point duplicates. These are packets with the same
flow label and the same attribute that may appear multiple
times at the same measurement point. These packets
should be counted only once in the flow cardinality
measurement. In the example of Section II-C, P0 has an
intra-point duplicate packet ⟨f0, e0⟩.

• Inter-point duplicates. These occur when different mea-
surement points observe packets with the same flow label
and the same attribute, resulting in duplicates across
measurement points. To accurately measure the network-
wide flow cardinality, we need to keep only one of
these packets and disregard the others. In the example
of Section II-C, ⟨f0, e0⟩ is an inter-point duplicate that
appears at three points P0,P1,P2.

While the traditional sampling methods fail to address both
intra-point and inter-point duplicates, recent non-duplicate
sampling methods [1], [22], [23], [24], [25], [26] success-
fully eliminate intra-point duplicates. NDS achieves this by
sampling a packet with a fixed probability only on its first
appearance and ignoring all subsequent occurrences, thereby
producing duplicate-free samples that accurately represent
the distribution of distinct packets in the original stream.
However, NDS falls short for inter-point duplicates because
it is designed for a single, localized stream, whereas network-
wide measurement involves geographically distributed packet
streams across multiple measurement points.

B. Distributed Non-duplicate Sampling
To remove the inter-point duplicates, we propose distributed

non-duplicate sampling (DNDS) as follows:
Definition 1: Given a sampling probability p and a grand

packet stream G consisting of multiple geographically dis-
tributed packet streams, for any packet x in G, DNDS should
sample it with probability p for one of its appearances and
block all other appearances.

Note that DNDS does not necessarily sample the packet
with probability p at its first appearance. For the purpose of
counting cardinality, any appearance is equally fine, as long
as only one appearance is sampled with probability p.

We will use our DNDS algorithm as a packet pre-processing
step for network-wide flow cardinality estimation. DNDS pre-
processes the incoming packet stream at line rate, producing
a sub-stream of sampled packets at each measurement point.
This sub-stream is then sent to the traffic measurement module,
where flow cardinality measurement is performed. The details
of the post-sampling measurement module will be discussed
in Section V.

C. Performance Metrics
Any algorithm that implements DNDS will need a data

structure to record the packets that have been seen. Such a

x Packet
x1, ..., x10 Packet stream in the example

p Sampling probability
Pi ith measurement point
Bi Bitmap at Pi

u Number of measurement points
G Grand packet stream
n Number of distinct packets in G
Si Local packet stream passing through Pi

Hi(·) Uniform hash functions
h(·) Uniform hash function
H′

i(·) Uniform hash functions
Bj

i jth segment in Bi

lj Number of bits in Bj
i

qj Number of bis of B0
i , ..., B

j
i

Ih(d) The index of segment that bit Bi[h(d)] locates at
zj Number of zero bits in segment Bj

j

TABLE II: Notations.

data structure will have a limited recording capacity, i.e., the
expected number of distinct packets it can record, which is
determined by the amount of allocated memory. We define
the sampling period as the expected number n of distinct
packets that the DNDS algorithm can process before its data
structure becomes saturated and can no longer ensure DNDS.
After this period, we must start a new period and initialize
the data structure. Therefore, DNDS is achieved for the grand
packet stream within each period.

Besides correctness, the performance of a DNDS algorithm
is evaluated by three metrics: (1) Given a sampling period
of n distinct packets, it should use as little on-chip memory
as possible; (2) given a memory allocation, it should extend
its sampling period as long as possible; (3) its per-packet
processing overhead should be as small as possible in order
to support highest possible line rate.

IV. DNDS ALGORITHM DESIGN

We begin with a naive solution and then present our design.
Some important notations are given in Table II.

A. A Naive Solution

The idea is to ensure that each packet is always pro-
cessed at the same measurement point. Specifically, each
packet, regardless of where and when it appears, is hashed
and then redirected to a specific measurement point. This
approach effectively divides the grand packet stream into
multiple mutually exclusive packet streams, each assigned to
one measurement point. As a result, there is no inter-point
duplicate, allowing us to apply the existing NDS solution at
each point.

However, the downside of this solution is that u−1
u packets

are expected to be redirected from one point to another, leading
to significant bandwidth consumption.

B. Our Solution

We aim to optimize the naive solution by reducing the ex-
cessive packet redirection. Recognizing the need for communi-
cation among measurement points to distribute the information

that a packet has arrived—thereby blocking future duplicates
of that packet at other points—our goal is to minimize such
communications. Our idea is to introduce a local filtering
process to remove the intra-point duplicates. Most packets will
not pass through this local filtering, and only those packets
likely to be making their first global appearance will pass
through and be further sent to the measurement point to which
the packet is hashed for inter-point duplicate removal. We
will conduct experiments to verify that such overhead is very
small in Table V and Section VI-B; only a tiny fraction of
packets need to be redirected, and only their flow labels and
attributes are sent to other measurement points, while the
original packets will proceed as usual.

q-1=0

m

qj-1

Bi
j

Bi

lj

m’

qj

Fig. 1: The data structure Bi of DNDS at any measurement
point Pi. Bi is an array of m′ bits, where only the first m
bits are real. The real part can also be split to u segments B0

i ,
B1

i ,... Bu−1
i .

Data structure and algorithm. As shown in Figure 1, each
measurement point is equipped with a bitmap Bi of m′ bits,
with only the first m bits being real. We call Bi[0] . . . Bi[m−1]
the real part of the filter and Bi[m] . . . Bi[m

′ − 1] the virtual
part of the filter. The m-bit real part is divided into u segments,
B0

i , B
1
i , B

2
i , . . . , B

u−1
i , each corresponding to a measurement

point. Let the number of bits in Bj
i be lj and the cumulative

number of bits of the first j segments be qj , i.e.,

qj =
∑j

k=0
lk. (1)

Let q−1 be 0. The lj bits in segment Bj
i ,

i.e., Bj
i [0], B

j
i [1], . . . , B

j
i [l

j − 1], correspond to
Bi[qj−1], Bi[qj−1 + 1], . . . , Bi[qj − 1] in Bi.

Each time a packet x is received at measurement point Pi,
we compute the hash h(x) = H(x) mod m′, where H(x) is
a hash function with a range sufficiently larger than m′. We
then perform the following four steps:

Step 1: Sampling with probability m
m′ . If h(x) ≥ m,

it falls in the virtual part of the filter, and we ignore the
packet, which does not cause any memory overhead or further
processing overhead since recording does not happen for this
packet. If h(x) < m, it falls in the real part of the filter, and
we proceed to the next step.

Step 2: Filtering local duplicates. If Bi[h(x)] is set to one,
we do nothing further, and the packet is blocked. Otherwise,
we set Bi[h(x)] = 1, find the segment that Bi[h(x)] belongs
to, denoted as B

Ih(x)

i , where Ih(x) satisfies

qIh(x)−1 ≤ h(x) < qIh(x)
. (2)

We then send the packet x to measurement point PIh(x)
, and

proceed to the next step. This packet redirection overhead

should be minimized. Essentially, only the flow label and
attribute of x are sent to point PIh(x)

instead of the raw packet.
Moreover, we will conduct experiments to verify that only a
very small portion of packets will be redirected in Table V
and Section VI-B.

Step 3: Filtering global duplicates. At measurement point
PIh(x)

, if BIh(x)
[h(x)] is one, we do nothing further, and the

packet is blocked. This occurs either because the packet x is
not the first appearance in G or due to other packets setting
the bit through hash collisions. Since we cannot differentiate
between these scenarios, we safely discard the packet. If
BIh(x)

[h(x)] is zero, we assert that packet x must be the first
appearance in G and proceed to the next step.

Step 4: Compensating sampling with increasing proba-
bility to achieve a total sampling probability p. Let zIh(x)

be the number of zeros in segment BIh(x)
. At this stage,

knowing x must be the first appearance, we can calculate the
probability that x is mapped to a zero bit in segment BIh(x)

as m
m′ · l

Ih(x)

m ·
zIh(x)

l
Ih(x)

=
zIh(x)

m′ . This probability decreases as
zIh(x)

decreases over time. To maintain a fixed total sampling
probability of p, we need a compensating sampling with an

increasing probability of
m′pIh(x)

zIh(x)

, where pk = lk

mp represents
the target probability in our design that any packet at its
first appearance gets sampled by exactly Pk, 0 ≤ k < u.
Specifically, we generate a random number r ∈ [0, 1) and

output x if r <
m′pIh(x)

zIh(x)

. Afterward, we set BIh(d)
[h(x)] = 1

to block subsequent appearances of the packet. Moreover, our
algorithm terminates when m′pk

zk
> 1 occurs at any point Pk.

The formal description is provided in Algorithm 1.
Example. Consider a network with three measurement

points P0, P1, P2, and a grand packet stream containing 10
distinct packets, x1, x2, . . . , x10, ordered by arrival time as
shown in Fig. 2.

0 0 1 0 1 1

0 0 1 0 0 0

0 1 0 0 0 1

𝑥1

Physical part

m m’

m m’

m m’

𝒙𝟐 𝑥3

𝒙𝟐 𝑥4

𝑥5

𝑥6

𝑥7 𝑥10

𝑥8

𝑥9

Virtual part

Fig. 2: There are 10 distinct packets in the example grand
packet stream. Among these packets, x2, x5, x6, and x8 are
hashed to the real part of the bitmap. The other packets
are hashed to the virtual part and are thus blocked. The
first appearance of x2, x5 and x8 are sampled. The second
appearance of x2 is blocked by Step 3 because the bit it hashes
to has been set to one by the first appearance of x2. Packet
x6 passes through Steps 1-3 but is not sampled in Step 4.

• x1: Hashed to the virtual part at P0 and ignored in Step
1.

Algorithm 1 Distributed non-duplicate sampling with proba-
bility p on any switch Pi

1: Input: sampling probability pi, number of total distinct
packets tend to process in a period: n

2: Action: perform distributed non-duplicate sampling
3: // setting m,m′ according to Theorem 2
4: if p < 1

e then
5: m = npe,m′ = n
6: else
7: m = − n

ln p ,m
′ = − n

ln p
8: end if
9: // data structure initialization

10: for Each measurement point Pi do
11: create a bitmap Bi of m bits, set zi = li

12: end for
13: //packet recording at any measurement point Pj

14: for each packet x arriving at Pj do
15: h(x) = H(x) mod m′

16: if h(x) < m then
17: if B[h(x)] = 0 then
18: B[h(x)] = 1
19: target switch id = Ih(x)
20: if target switch id ̸= j then
21: forward x to target switch id
22: else
23: zj = zj − 1
24: generate a random number r ∈ [0, 1)

25: if r < m′ljp
mzj

then
26: x is sampled
27: end if
28: if m′ljp

mzj
> 1 then

29: terminate sampling
30: end if
31: end if
32: end if
33: end if
34: end for

• x2 (first arrival): Hashed to the real part at P1. The bit is
zero (which will be set to one to block future duplicates),
indicating its first appearance. With Ih(x2) = 1, no packet
redirection is needed. After passing through Step 4, it gets
sampled by DNDS.

• x3: Hashed to the virtual part at P1 and is ignored.
• x2 (second arrival): Hashed to the real part at P2 and

its hashed bit is zero (which will be set to one to block
future duplicates), indicating the first appearance of this
packet at P2. With Ih(x2) = 1, the packet is forwarded
to P1 and further ignored by P1 as the packet already
appeared.

• x4: Hashed to the virtual part at P2 and is ignored.
• x5: Hashed to the real part at P0 and its hashed bit is

zero. So it passes through Steps 1 and 2. With Ih(x5) =
0. It automatically passes through Step 3. After passing

through Step 4, it gets sampled by DNDS.
• x6: Hashed to the real part at P2 and its hashed bit is zero.

So it passes through Steps 1 and 2. With Ih(x6) = 2. It
automatically passes through Step 3. However, it does not
pass through Step 4, and thus is not sampled by DNDS.

• x7: Hashed to the virtual part at P1 and is ignored.
• x8: Hashed to the virtual part at P0, and its hashed bit is

zero. So it passes through Steps 1 and 2. With Ih(x8) = 2.
x8 is redirected to P2, where the h(x8)th bits is zero.
Thus, the packet passes through Step 3. It automatically
passes through Step 3. After passing through Step 4, it
gets sampled by DNDS.

• x9, x10: Hashed to the virtual part and are thus ignored.

C. Analysis

Correctness proof. For correctness, any packet will pass
the filter with probability p at its first appearance and will be
blocked for subsequent appearances, which is proven in the
following Theorem 1.

Theorem 1: Algorithm 1 will sample each distinct packet
once with probability p, regardless how many times it appears
and where it appears.

Proof: For any packet x that appears at arbitrary mea-
surement point Pi, the probability for it to pass through Step
1 (which means x is hashed to the real part of Bi) is m

m′ . We
combine the process in Steps 2 and 3 together. Packet x passes
through Steps 2 and 3 only when its hashed bit in switch Pi,
i.e., Bi[h(x)] and its hash bit switch Pj , i.e., Bj [h(x)] are both
zero, assuming that Ih(x) = j for ease of representation. Note
that if Bj [h(x)] = 0, Bi[h(x)] = 0 must holds as otherwise
the packet that sets Bi[h(x)] = 1 must be redirected to switch
Pj and set Bj [h(x)] = 0. Therefore, we only need to care
about the Bj [h(x)] when calculating the probability of passing
through Steps 2 and 3, which is zj

lj · lj

m =
zj
m . The sampling

probability in Step 4 is pjm
′

zj
. Therefore, the total sampling

probability of passing through Steps 1-4 under the condition
of Ih(x) = j is m

m′ · zjm · pjm
′

zj
= pj . Considering that the packet

can be hashed to any segment, i.e., Ih(x) = 0, 1, ..., u−1, The
total sampling probability is

∑u−1
j=0 = pj .

For the first appearance of any packet that is redirected
to PIh(x)

, it will be sampled with probability of p. For the
second appearance of that packet that is redirected to PIh(x)

,
its hash bit BIh(d)

[Ih(x)] = 1 must hold as at least this bit must
have been set by its first appearance. Therefore, duplicates are
removed, all those appearances will not pass the filter.

Optimal parameter setting. The following theorem guar-
antees the optimal parameter setting under given p and n.

Theorem 2: Let n be the expected number of distinct packets
to be processed in the grand packet stream G. The optimal
parameter setting of Algorithm 1 is

m′ =

{
n, p < 1

e
− n

ln p ,
1
e ≤ p < 1

m =

{
npe, p < 1

e
− n

ln p ,
1
e ≤ p < 1

(3)

which minimizes the size m for the real part of the filter, under
a given non-duplicate sampling probability p.

Proof: Among the n distinct packets, the expected num-
ber of packets recorded in the real part of all Bi is n m

m′ .
The algorithm terminates when m′pk

zk
= 1 at any point Pk,

which is equivalent to zk
m = pm′lk

m2 . Since each packet will
be randomly hashed to any bit in any segments. According
to [27], the expected number of packets recorded in the
real part of all Bi is −m ln

∑m−1
k=0 zk
m , which is −m ln pm′

m ,
combining with zk

m = pm′lk

m2 , under the assumption that n
and m are sufficiently large and n/m is close to an arbitrary
constant. In this paper, n and m satisfy this assumption as
the number of distinct packets n and the number of bits
m are usually very large and n/m is a constant by (3).
According to Alg. 1, a sampling period ends when z = m′p.
At that time, the expected number of packets recorded in
the bitmap should not be less than n m

m′ . Therefore, we have
n m

m′ ≤ −m ln m′p
m ⇒ ln m′p

m ≤ − n
m′ ⇒ m ≥ m′pe

n
m′ .

The minimum value of m is achieved when m = m′pe
n
m′ .

Taking the first-order derivative on the right side, we have
dm
dm′ =

dm′pe
n
m′

dm′ = pe
n
m′ − np

m′ e
n
m′ = e

n
m′ p(1− n

m′)
Setting dm

dm′ = 0, we have m′ = n. Besides, when m′ < n,
dm
dm′ < 0; when m′ > n, dm

dm′ > 0. Therefore, the minimum
value of m, is npe which achieves when m′ = n. However,
since m ≤ m′, this parameter setting is valid only when p ≤ 1

e .
For p > 1

e , we always have m′ > n from (3) and dm
dm′ >

0, which means the optimal setting is m′ = m. Under this
condition, we have m′ = m = m′pe

n
m′ ⇒ 1 = pe

n
m′ ⇒

m′ = −n/ ln p In this case, we have m′ = − n
ln p .

Performance analysis. The following theorem proves the
maximum support grand packet stream size under given mem-
ory allocation and p.

Theorem 3: Given a distributed non-duplicate sampling
probability p and a memory allocation of m bits at each
measurement point, the expected number of distinct packets in
the grand packet stream that can be recorded before starting
the next sampling period is

n =

{ m
pe , p < 1

e

−m ln p, 1
e ≤ p < 1

(4)

The proof is trivial and thus omitted. It can be derived easily
from (3).

V. APPLICATION: NETWORK-WIDE FLOW CARDINALITY
MEASUREMENT WITH DNDS

A. On-Chip-Off-Chip Model: DNDS + Hash Table

We propose an on-chip-off-chip model for network-wide
flow cardinality measurement, where the DNDS solution is
implemented in on-chip memory such as SRAM, and the hash
table is implemented in off-chip memory to store the counts
of samples in each flow. The advantage of this model is that
it utilizes the high speed of on-chip memory to match the
line rate of packet streams and the large capacity of off-chip
memory. This model can be especially applied for offline data
analytics.

After DNDS processing, duplicates in the packet streams
are removed, and a subset of distinct packets is sampled.

The sampled packets will be output at a significantly reduced
rate. For example, the CAIDA 1-minute traffic trace contains
20 million packets but only 430 thousand distinct source-
destination IP pairs, resulting in a duplicate ratio of 46.5.

Furthermore, the on-chip-off-chip model ensures that com-
munication between the on-chip SRAM and off-chip hash
table is one-way: only packets sampled by the on-chip DNDS
are forwarded to the off-chip hash table, with no reverse
communication.

To perform network-wide flow cardinality measurement,
we deploy a hash table HTi in off-chip memory at each
measurement point Pi. For any packet ⟨f, e⟩, if it is sampled
by DNDS with probability p, we perform insertion with the
following two cases.

• If HTi does not contain f in the key set, we insert entry
⟨f, 1

p ⟩ to HTi

• Otherwise, we increment the value of f by 1
p , that is

HTi.put(f,HTi.getV alue(f) + 1
p).

For query on flow f ’s cardinality, we sum up the value of
f in all hash table HT0, HT1, ..., HTm−1. That is, we return

n̂f =
∑u−1

i=0
HTi.getOrDefault(f, 0) (5)

B. Entirely On-Chip Model: DNDS + CU Sketch

The entirely on-chip model utilizes another property of
DNDS: The sampled packets after DNDS contains no dupli-
cates and each distinct packet has the same probability p of
being sampled. Therefore, we can count the number of packets
in the samples for each flow, called flow size. The network-
wide flow cardinality can be derived by dividing the flow size
by p.

We can adopt the compact data structures, called sketches to
measure flow sizes in the samples. The well-known sketches
are CM [28], CU [29], and CS [30], with CU being recognized
as the most accurate. Therefore, it is adopted in this paper. We
first review the CU sketch:

CU sketch. The data structure is a two-dimension array of
C of counters, with k rows and w columns. The jth counter
in the ith row is denoted as Ci[j], with 0 ≤ i < k, 0 ≤ j < w.
Each counter is initialized to zero. There are two operations.
•Recording: We record a packet ⟨f, e⟩ to k counters

C0[H
′
0(f)], C1[H

′
1(f)],..., Ck−1[H

′
k−1(f)], where H ′

i(·) ∈
[0, w − 1], with 0 ≤ i < k are k independent uniform hash
functions. Let the minimum value among the k hash counters
as vmin, i.e.,

vmin = min
0≤i<k

Ci[H
′
i(f)]. (6)

For each counter Ci[H
′
i(f)] with 0 ≤ i < k, CU increases its

value to vmax +
1
p if its value is smaller than vmax +

1
p , i.e.,

Ci[H
′
i(f)] = max{Ci[H

′
i(f)], vmax +

1
p}.

Actually, in implementation, if vmax +
1
p is not integer, we

will increase Ci[H
′
i(f)] to ⌈vmax + 1

p⌉ with probability of
vmax+

1
p−Ci[H

′
i(f)]

⌈vmax+
1
p ⌉−Ci[H′

i(f)]
.

• Look-up: Return the minimum value as the estimate of
flow f , i.e., min0≤i<k Ci[H

′
i(f)].

To perform network-wide flow cardinality measurement,
we deploy a CU sketch Cj in on-chip memory at each
measurement point Pj For any packet ⟨f, e⟩, if it is sampled
by DNDS with probability p, we record it to Cj based on the
recording operation of CU.

For query on flow f ’s cardinality, we sum up the estimate
of f from all measurement points by performing look-ups in
all CU sketches C0, C1, ..., Cu−1. That is, we return

n̂f =
∑

0≤j<u
min

0≤i<k
Cj

i [H
′
i(f)]. (7)

The entirely on-chip model enables real-time queries of
network-wide flow cardinality [19]. For example, when appli-
cations need to identify flows with rapidly increasing cardinali-
ties to detect potential DDoS attacks in real-time, DNDS + CU
can perform the look-up operation in (7). Since this operation
is already executed during packet recording (6), DNDS + CU
incurs minimal additional overhead when responding to online
queries.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setting

We have implemented the proposed algorithm for DNDS.
We have also implemented (1) two DNDS-based solutions for
network-wide flow cardinality estimation, DNDS + Hash Table
and DNDS + CU, and (2) the state-of-the-art prior work that
performs network-wide flow cardinality estimation, vSkt(HLL)
[5], rSkt2(HLL) [31], AROMA [21]. The experiments are
performed on a computer with 13th Generation Intel Core
i7-13700 (30MB Cache, 16 Core (8+8), 2.1GHz to 5.2GHz
(65W)) and 16 GB memory.

The data traces used in our evaluation are real Internet
traffic traces downloaded from CAIDA [32]. We use 10 traces,
each containing around 20M packets. Each experiment is
performed over 10 traces and we present the average results.
Flow label is defined as destination address and the attribute
is the source address, both carried in each packet’s header,
which has the application of DDoS detection. Flow cardinality
is the number of distinct sources that communicate with a
destination. Packets will be distinct if they possess different
flow labels or attributes. Each trace contains around 430k
distinct packets, i.e., n ≈430k. The CAIDA data set is used
as the grand packet stream. For each packet we will randomly
assign it to one or multiple measurement points.

The parameters settings of the proposed algorithm, i.e., m′

and m are set when n and p given. n can be obtained from the
real traffic traces and p will be given in each specific figure.
We stress that m is the size of the real part, while m′ is
size of the whole bitmap, including the virtual part. Therefore,
we use m to denote the memory allocation of the proposed
DNDS algorithm. The number of measurement points are set
as u = 20. We follow the parameter settings of vSkt(HLL),
rSkt2(HLL), AROMA, in the original papers. Specifically, The
HLL register is 5bits and each flow is mapped to 128 registers
for vHLL and vSkt(HLL). Each entry in AROMA consists of
a 32-bit key field and a 32-bit value field. Each measurement

p 0.5 0.25 0.1 0.01
Throughput (Mpps) 70.2 64.5 62.4 59.8

TABLE III: Maximum supported line rate of the proposed
algorithm under different sampling probabilities p.

m(Mbits) 0.1 1 10
n̂ n n̂ n n̂ n

0.5 0.07 0.07 0.69 0.69 6.92 6.93
0.25 0.15 0.15 1.46 1.47 14.64 14.71
0.10 0.36 0.37 3.62 3.67 36.23 36.79
0.01 3.62 3.67 36.23 36.78 362.34 367.87

TABLE IV: Maximum number of distinct packets that can be
supported by the proposed algorithm n̂ (×106) vs. theoretical
maximum supported n by Eq. (4) under different sampling
probabilities p, and memory allocations m.

point will be deployed with an instance of the measurement
algorithm with the same parameter setting.

B. Sampling Performance of DNDS

This paper is the first to define and implement DNDS. We
evaluate the sampling performance of the proposed algorithm
in the following four dimensions.
Actual sampling rate: We evaluate the actual sampling rate
of ten random chosen subsets, each containing around 50k
distinct packets, under given sampling probability p= 0.01,
0.1, 0.25 and 0.5, respectively. The results in Figure 3 show
that the actual sampling rate is close to p, especially when p
is large.
Maximum supported line rate: We measure the maximum
line rate the DNDS solution can catch up when processing
packet streams. The unit is million packets per second, ab-
breviated as Mpps. Mpps is changed to Gbps if multiplying
the average packet size (kbits) in the trace — if the average
packet size is 1kbits, 1Mpps and 1Gbps represent the same
maximum supported line rate. The results in Table III shows
that the proposed algorithm can support processing at least
59.8 million packets per second.
Maximum supported n̂: It is defined as the maximum number
of distinct packets the proposed algorithm can support under
given sampling probability p and memory allocation m. Large
maximum n means longer sampling period. We can also
calculate the theoretical n by Eq. (4). The results are shown
in Table IV, where we can see the n̂ and n are very similar.
Ratio of redirected packets: It is defined as the ratio of the
number of redirected packets from one measurement point to
another in line 21 of Algorithm 1 over the total number of
packets in the packet stream. The results are shown in Table
V, where we observe only small portion of packets whose flow
labels and attributes will be redirected. The ratios are 2.5%,
1.5%, < 1% and <0.1% under the probabilities of 0.5, 0.25,
0.1, and 0.01, respectively.

C. Network-wide Flow Cardinality Estimation using DNDS

In this section, we evaluate the performance of the proposed
network-wide flow cardinality estimation algorithm using two
approaches in Section V: DNDS + Hash Table and DNDS
+ CU under different memory configurations and sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

p = 0.5

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

(a) p=0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9 10

p = 0.25

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

(b) p=0.25

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 1 2 3 4 5 6 7 8 9 10

p = 0.1

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

(c) p=0.1

 0

 0.004

 0.008

 0.012

 0.016

 0.02

 1 2 3 4 5 6 7 8 9 10

p = 0.01

R
ea

l
S

am
p

li
n

g
 R

at
e

Subset Index

(d) p=0.01
Fig. 3: Actual sampling rate w.r.t. subset index, under different given sampling probability p. The difference between actual
sampling rate and p is within 0.02p, when p ≥ 0.1, and within 0.05p when p = 0.01.

Fig. 4: Scatter plots: Estimated cardinality vs. actual cardinality of DNDS + Hash Table for network-wide flow cardinality
estimation under the memory allocations of 0.1Mb, 0.5Mb, 1Mb, and 5Mb, respectively.

Fig. 5: Scatter plots: Estimated cardinality vs. actual cardinality of DNDS + CU for network-wide flow cardinality estimation,
under the memory allocations of 2MB, 4Mb, 6Mb, 8Mb, and 10Mb, respectively, respectively.

p 0.5 0.25 0.1 0.01
Ratio 0.02451 0.01517 0.00607 0.00072

TABLE V: Ratio of redirected packets under different sam-
pling probabilities.

m(Mbits) p (0, 10] (10, 102] (102, 103] (103, 104] (104, 105]
0.1 0.0825 2.3 12.3 42.7 125.0 605.3
0.5 0.4100 1.3 4.5 14.4 38.4 161.0
1.0 0.6403 0.8 2.8 9.3 27.4 55.2
5.0 0.9147 0.2 1.2 3.9 10.9 34.6

TABLE VI: Absolute error of network-wide flow cardinality
estimation with DNDS + Hash Table, under different memory
allocations.

probabilities. We use the absolute error as the accuracy metric,
defined as

∑
|sf − ŝf |/N , where ŝf and sf are the estimated

and actual cardinality of flow f , respectively, and N is the
number of flows in the flow set.

In addition to the average error as the accuracy metrics,
we employ scatter plots to comprehensively present first-hand
estimation results. In scatter plots, each dot represents a flow

m(Mbits) p (0, 10] (10, 102] (102, 103] (103, 104] (104, 105]
2 0.6897 10.3 5.0 9.8 30.5 72.7
4 0.8305 4.0 2.4 7.2 18.5 25.7
6 0.8835 2.2 1.9 6.2 13.9 41.3
8 0.9113 1.4 1.6 5.3 11.0 17.7
10 0.9284 1.0 1.4 5.0 9.7 6.3

TABLE VII: Absolute error of network-wide flow cardinality
estimation with DNDS+CU, under different memory alloca-
tions.

with the x-axis being the real value and the y-axis being the
estimate. The flows are placed in bins based on their actual
cardinalities (which can be found directly from the traffic
traces). The cardinality bins are (0,10], (101, 102], (102, 103],
(103, 104], and (104, 105]. We average the absolute/relative
error of flows in each bin.

DNDS + Hash Table: The memory allocated for this
method varied from 100 kbits to 5 Mbits. The sampling
probabilities were calculated from Theorem 2 based on the
memory allocation and the total number of distinct packet n

in the data set. The results, as shown in Table VI, indicate that
increasing the memory allocation reduces both the absolute
error across all bins. For instance, when the memory is
increased from 100 kbits to 5 Mbits, the absolute error in the
largest bin range (104, 105] decreases from 605.3 to 34.6. This
demonstrates the effectiveness of higher memory allocations in
improving the accuracy of flow cardinality estimation. We also
plot the scatter plot under these memory allocations, shown in
Figure 4, where we can visually find all dots concentrates
to the line y = x, especially under 1Mb and 5Mb memory
allocations where precise estimation is achieve for every flow.

DNDS + CU: Both DNDS and CU are implemented in
on-chip memory, therefore both account for the total memory
allocation. Define the partition ratio as the ratio of memory for
the DNDS over the total memory. The larger the partition ratio
is, the more memory allocated to DNDS and the less to CU.
After that, the respective sampling probability can be derived
from the memory allocated to DNDS and n. We vary the total
memory allocations from 2 Mbits to 10 Mbits, a narrower
range compared to the memory allocation to DNDS + Hash
Table as a workable CU sketch needs at least million bits. We
want to stress that we have conducted exhaustive preliminary
experiments to find a good setting of the partition ratio. Given
memory from 1 Mbits to 10 Mbits, we test the accuracy
performance of flows in different bins, under different partition
ratios from 0.1 to 0.9 with a step length of 0.1. The results
are very detailed and are omitted due to space limit. But the
conclusion is that the partition ratio is recommended to be
0.6 for memory sizes in [1Mbits, 10Mbits]. Moreover, the
accuracy performance is not sensitive to the partition ratio. A
slight difference from 0.6 can also achieve good performance.
In the rest of this section, we will set the partition ratio as 0.6.

The absolute error results for DNDS + CU are presented in
Table VII. Similar to the hash table-based method, increasing
the total memory allocation reduces both the absolute and
relative errors across all bin ranges. For example, with a
memory allocation of 10 Mbits, the absolute error in the largest
bin range (104, 105] is 6.33, such small values that precise
estimation can be achieved. We also plot the scatter plot under
these memory allocations, shown in Figure 5. we can visually
find all dots concentrates to the line y = x, especially under
8Mb and 10Mb memory allocations where almost all small
flows’ estimates deviates within 50.

D. Accuracy Comparison with Sketch-based Solutions

Our solutions, DNDS + Hash Table and DNDS + CU
are the first sampling-based solutions for network-wide flow
cardinality measurement. Existing solutions are sketch-based
where each measurement point will be deployed a sketch in
the on-chip memory and will be aggregated for network-wide
flow cardinality queries offline. We compare our solutions
with the state-of-the-art sketches that can support network-
wide measurement, i.e., vSkt(HLL) [5], rSkt2(HLL) [31], and
AROMA [21]. We inherit the accuracy metrics of absolute
error and scatter plots in the previous Section VI-C.

Scatter plot presentation under 1Mb memory (Figure
6). In each figure, we also plot line y = x. From the scatter
plots, we find DNDS + Hash Table is visually the most
accurate sketch. Its dots concentrate to the line y = x most
than other solutions. DNDS + CU outperforms all sketches
in terms of the accuracy of large flows whose cardinalities
are above 102. Its dots for small flows are visually slightly
more concentrated than vSkt(HLL). The dots of AROMA,
vSkt(HLL), and rSkt2(HLL) are more scattered, especially for
those numerous dots for small flows. AROMA only tracks
partial flows as it is designed for measuring large flows.
In the plot, there are fewer dots than other sketches’ plots.
In addition, even if small or medium flows get sampled by
AROMA, their estimation error is large, around 102 in Figure
6.

Scatter plot presentation under 5Mb memory (Figure
7). When memory increases, we can visually find the dots are
more concentrated to the line y = x for each solution. But
we emphasize that DNDS + Hash Table dots are still more
concentrated than others: almost all dots are in the line y = x.
We can also find that DNDS + CU’s dots are visually more
concentrated than rSkt2(HLL) and vSkt(HLL), especially for
medium and large flows. AROMA still cannot measure all
small/medium flows.

Average absolute error under 1Mb memory (Table VIII).
We give the statistical results of average absolute error for
flows whose real cardinalities are in the same range. The
ranges are (0, 101], (101, 102], (102, 103]... For Table VIII,
DNDS + Hash Table is the only one that can achieve the
average absolute error < 101 for flows in the ranges of
(0, 101], (101, 102] and (102, 103]. Other solutions’ error is
larger than 101. For medium and large flows, DNDS + Hash
Table and DNDS + CU are the best two solutions, and are
the only two solutions can achieve the average absolute error
< 100 for flows whose cardinalities are above 100.

Average absolute error under 5Mb memory (Table IX).
DNDS + Hash Table and DNDS + CU maintain their best
accuracy over other solutions. Specifically, DNDS + Hash
Table reduces the average absolute error by 96.8%, 97.3%, and
95.8%, , compared to AROMA, rSkt2(HLL), and vSkt(HLL),
for flows in the range of (0, 101], and by 91.6%, 97.0%, and
94.6% compared to AROMA, rSkt2(HLL), and vSkt(HLL),
for flows in the range of (104, 105], respectively. DNDS +
CU reduces the average absolute error by 53.4%, 61.5%, and
38.6%, , compared to AROMA, rSkt2(HLL), and vSkt(HLL),
for flows in the range of (0, 101], and by 88.8%, 95.0%, and
84.7% compared to AROMA, rSkt2(HLL), and vSkt(HLL),
for flows in the range of (104, 105], respectively.

VII. RELATED WORKS

Traditional sampling and non-duplicate sampling: A simple
sampling technique is systemic sampling, where a packet is
deterministically selected based on arrival time or its position
in the data stream. Examples of applications/protocols that
implement systemic sampling are sFlow [33], NetFlow [34]
and Juniper per-packet sampling. Another sampling technique

Fig. 6: Scatter plots: Estimated cardinality vs. actual cardinality of DNDS + Hash Table, DNDS + CU, AROMA, vSkt(HLL),
rSkt2(HLL) for network-wide flow cardinality estimation under the memory allocations of 1Mb.

Fig. 7: Scatter plots: Estimated cardinality vs. actual cardinality of DNDS + Hash Table, DNDS + CU, AROMA, vSkt(HLL),
rSkt2(HLL) for network-wide flow cardinality estimation under the memory allocations of 5Mb.

Cardinality Flows DNDS+HT DNDS+CU AROMA rSkt2(HLL) vSkt(HLL)
(0, 10] 109558 0.8 24.8 31.1 22.3 12.7

(10, 102] 2848 2.8 14.9 25.9 23.1 14.1
(102,103] 281 9.3 13.9 64.2 33.7 35.5
(103,104] 23 27.4 31.0 325.1 278.9 375.7
(104,105] 2 55.2 99.0 879.5 1945 644

TABLE VIII: Average absolute error of flows in different
ranges under the CAIDA dataset. Memory for each solution
is 1Mb. This table presents the statistical results in Figure 6.

Cardinality Flows DNDS+HT DNDS+CU AROMA rSkt2(HLL) vSkt(HLL)
(0, 10] 109558 0.2 2.9 6.2 7.5 4.7

(10, 102] 2848 1.2 2.1 9.6 8.1 5.7
(102,103] 281 3.9 7.1 32.9 25.2 20.4
(103,104] 23 10.8 24.2 95.8 245.1 256.1
(104,105] 2 34.6 31.7 407.4 1133.8 640.7

TABLE IX: Average absolute error of flows in different ranges
under the CAIDA dataset. Memory for each solution is 5Mb.
This table presents the statistical results in Figure 7.

is a random sampling where a number of packets are ran-
domly selected from total packets. Non-duplicate sampling can
support flow cardinality measurement. Bloom filter [35] can
remove duplicates but it cannot support the same sampling
probability. The first work that supports the same sampling
probability for each distinct packet is two-phase protocol for
non-duplicate sampling [1] proposed by Sun et al.. Some
subsequent work [23], [24], [25], [26] further optimize the
performance of non-duplicate sampling or the flow cardinality
estimation. But they are designed for single measurement point
and cannot deal with network-wide flow cardinality estimation
due to duplicates among measurement points.

Sketch-based flow cardinality measurement: To measure the
flow cardinality for each flow in the packet stream, CSE

[36] and vHLL [37] reduce memory consumption through
space sharing. bSketch [5] and vSketch [5] propose a family
of sketches using plug-ins like bitmaps [27], FM sketches
[7] and HLL sketches [11], [12]. Among all the solutions,
vSketch using HLL sketches, denoted as vSkt(HLL) is the
most accurate one. rSkt2 is a generalized sketch framework
using plug-ins such as bitmaps [27], FM sketches [7] and
HLL sketches [11], [12]. The most accurate one is rSkt2(HLL).
vSkt(HLL) and rSkt2(HLL) are designed originally for single
measurement point but can also support network-wide flow
cardinality estimation. AROMA [21] is specially designed for
network-wide flow cardinality estimation. SpreadSketch [38]
is designed to only estimate the network-wide cardinality of
large flows; most of the small flows are ignored.

VIII. CONCLUSION

This paper proposes a new sampling called distributed non-
duplicate sampling (DNDS), which can sample each distinct
packet at its first appearance with probability p and block
its subsequent appearances at any measurement points. We
propose an algorithm to implement DNDS and theoretically
analyze its performance and optimally set the parameters.
We then propose two DNDS-based solutions to network-wide
flow cardinality estimation, which outperforms existing sketch-
based solutions significantly in terms of accuracy.

ACKNOWLEDGMENT

This work is supported by the University of Kentucky start-
up fund. Haibo Wang is the corresponding author.

REFERENCES

[1] Y.-E. Sun, H. Huang, C. Ma, S. Chen, Y. Du, and Q. Xiao, “Online
Spread Estimation with Non-duplicate Sampling,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 2440–2448.

[2] C. Ma, O. O. Odegbile, D. Melissourgos, H. Wang, and S. Chen, “From
countmin to super kjoin sketches for flow spread estimation,” IEEE
Transactions on Network Science and Engineering, 2023.

[3] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in high-speed networks,”
IEEE/ACM Transactions on Networking, 2022.

[4] Q. Xiao, Y. Cai, Y. Cao, and S. Chen, “Accurate and O (1)-Time
Query of Per-Flow Cardinality in High-Speed Networks,” IEEE/ACM
Transactions on Networking, 2023.

[5] Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
Sketch Families for Network Traffic Measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, pp. 1–34, Dec. 2019.

[6] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, June
1990.

[7] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” Journal of Computer and System Sciences,
vol. 31, pp. 182–209, September 1985.

[8] C. Estan, G. Varghese, and M. Fisk, “Bitmap Algorithms for Count-
ing Active Flows on High-Speed Links,” IEEE/ACM Transactions on
Networking, vol. 14, no. 5, pp. 925–937, 2006.

[9] K. Beyer, P. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla, “On
Synopses for Distinct-value Estimation under Multiset Operations,” in
Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, 2007, pp. 199–210.

[10] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
European Symposia on Algorithms, pp. 605–617, 2003.

[11] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Proc. of
AOFA, pp. 127–146, 2007.

[12] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice:
Algorithmic Engineering of a State of the Art Cardinality Estimation
Algorithm,” in Proceedings of the 16th International Conference on
Extending Database Technology. ACM, 2013, pp. 683–692.

[13] H. Wang, C. Ma, S. Chen, and Y. Wang, “Online cardinality estimation
by self-morphing bitmaps,” in 2022 IEEE 38th International Conference
on Data Engineering (ICDE). IEEE, 2022, pp. 1–13.

[14] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in Proc. of USENIX NSDI, 2016.

[15] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual esti-
mators for big network data based on register sharing,” in Proceedings of
the 2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, 2015, pp. 417–428.

[16] M. Yoon, T. Li, S. Chen, and J.-K. Peir, “Fit a spread estimator in small
memory,” in IEEE INFOCOM 2009. IEEE, 2009, pp. 504–512.

[17] ——, “Fit a compact spread estimator in small high-speed memory,”
IEEE/ACM Transactions on Networking, vol. 19, no. 5, pp. 1253–1264,
2010.

[18] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality estimation for elephant flows: A compact solution based
on virtual register sharing,” IEEE/ACM Transactions on Networking,
vol. 25, no. 6, pp. 3738–3752, 2017.

[19] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proceed-
ings of the VLDB Endowment, vol. 14, no. 6, 2021.

[20] R. Ben-Basat, G. Einziger, S. L. Feibish, J. Moraney, B. Tayh, and
D. Raz, “Routing-oblivious network-wide measurements,” IEEE/ACM
Transactions on Networking, vol. 29, no. 6, pp. 2386–2398, 2021.

[21] R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz, and M. Yu,
“Routing oblivious measurement analytics,” in 2020 IFIP Networking
Conference (Networking). IEEE, 2020, pp. 449–457.

[22] H. Huang, Y.-E. Sun, C. Ma, S. Chen, Y. Du, H. Wang, and Q. Xiao,
“Spread estimation with non-duplicate sampling in high-speed net-
works,” IEEE/ACM Transactions on Networking, vol. 29, no. 5, pp.
2073–2086, 2021.

[23] C. Ma, H. Wang, O. O. Odegbile, and S. Chen, “Virtual filter for non-
duplicate sampling,” in 2021 IEEE 29th International Conference on
Network Protocols (ICNP). IEEE, 2021, pp. 1–11.

[24] C. Ma, H. Wang, O. O. Odegbile, S. Chen, and D. Melissourgos, “Virtual
filter for non-duplicate sampling with network applications,” IEEE/ACM
Transactions on Networking, vol. 30, no. 6, pp. 2818–2833, 2022.

[25] Y. Du, H. Huang, Y.-E. Sun, S. Chen, and G. Gao, “Self-adaptive
sampling for network traffic measurement,” in IEEE INFOCOM 2021-
IEEE Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[26] Y. Du, H. Huang, Y.-E. Sun, S. Chen, G. Gao, X. Wang, and S. Xu,
“Short-term memory sampling for spread measurement in high-speed
networks,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 470–479.

[27] K. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-time
Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, 1990.

[28] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: the Count-Min Sketch and Its Applications,” Proc. of LATIN,
2004.

[29] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” Proc. of ACM SIGCOMM, August 2002.

[30] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2002, pp. 693–703.

[31] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Random-
ized Error Removal for Online Spread Estimation in Data Streaming,”
Proceedings of the VLDB Endowment, vol. 14, no. 6, pp. 1040–1052,
2021.

[32] UCSD, “CAIDA UCSD Anonymized 2015 Internet Traces on Jan. 17,”
http://www.caida.org/data/passive/passive 2015 dataset.xml, 2015.

[33] Inmon Corporation, “sFlow Accuracy and Billing,” Online. [Online].
Available: https://inmon.com/technology/

[34] Cisco, “Cisco IOS NetFlow,” Online. [Online]. Available: http://www.
cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[35] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[36] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Compact Spread Estimator in
Small High-Speed Memory,” IEEE/ACM Transactions on Networking,
vol. 19, no. 5, pp. 1253–1264, October 2011.

[37] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality Estimation for Elephant Flows: A Compact Solution based
on Virtual Register Sharing,” IEEE/ACM Transactions on Networking,
2017.

[38] L. Tang, Q. Huang, and P. P. Lee, “SpreadSketch: Toward Invertible
and Network-Wide Detection of Superspreaders,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1608–1617.

